Skip to contents

Calculates the Expected Value of Perfect Partial Information (EVPPI) for subsets of parameters. Uses GAM non-parametric regression for single parameter EVPPI and the SPDE-INLA method for larger parameter subsets.

Usage

evppi(he, param_idx, input, N = NULL, plot = FALSE, residuals = TRUE, ...)

# S3 method for default
evppi(he, ...)

# S3 method for bcea
evppi(
  he,
  param_idx = NULL,
  input,
  N = NULL,
  plot = FALSE,
  residuals = TRUE,
  method = NULL,
  ...
)

Arguments

he

A bcea object containing the results of the Bayesian modelling and the economic evaluation.

param_idx

A vector of parameters for which the EVPPI should be calculated. This can be given as a string (or vector of strings) of names or a numeric vector, corresponding to the column numbers of important parameters.

input

A matrix containing the simulations for all the parameters monitored by the call to JAGS or BUGS. The matrix should have column names matching the names of the parameters and the values in the vector parameter should match at least one of those values.

N

The number of PSA simulations used to calculate the EVPPI. The default uses all the available samples.

plot

A logical value indicating whether the triangular mesh for SPDE-INLA should be plotted. Default set to FALSE.

residuals

A logical value indicating whether the fitted values for the SPDE-INLA method should be outputted. Default set to TRUE.

...

Additional arguments. Details of the methods to compute the EVPPI and their additional arguments are:

  • For single-parameter:

    • Generalized additive model (GAM) (default).

    • The method of Strong & Oakley use method as string so. The user needs to also specify the number of "blocks" (e.g. n.blocks=20). Note that the multi-parameter version for this method has been deprecated.

    • The method of Sadatsafavi et al. where method takes as value a string of either sad or sal. It is then possible to also specify the number of "separators" (e.g. n.seps=3). If none is specified, the default value n.seps=1 is used. Note that the multi-parameter version for this method has been deprecated.

  • For multi-parameter:

    • INLA/SPDE (default).

    • Gaussian process regression with method of gp.

method

Character string to select which method to use. The default methods are recommended. However, it is possible (mainly for backward compatibility) to use different methods.

Value

Object of class evppi:

evppi

The computed values of evppi for all values of the parameter of willingness to pay.

index

A numerical vector with the index associated with the parameters for which the EVPPI was calculated.

k

The vector of values for the willingness to pay.

evi

The vector of values for the overall EVPPI.

fitted.costs

The fitted values for the costs.

fitted.effects

The fitted values for the effects.

parameters

A single string containing the names of the parameters for which the EVPPI was calculated, used for plotting the EVPPI.

time

Computational time (in seconds).

fit.c

The object produced by the model fit for the costs.

fit.e

The object produced by the model fit for the effects.

formula

The formula used to fit the model.

method

A string indicating the method used to estimate the EVPPI.

Details

The single parameter EVPPI has been calculated using the non-parametric GAM regression developed by Strong et al. (2014). The multi-parameter EVPPI is calculated using the SPDE-INLA regression method for Gaussian Process regression developed by Heath et al. (2015).

This function has been completely changed and restructured to make it possible to change regression method. The method argument can now be given as a list. The first element element in the list is a vector giving the regression method for the effects. The second gives the regression method for the costs. The method' argument can also be given as before which then uses the same regression method for all curves. All other extra_argscan be given as before.int.ordcan be updated using the list formulation above to give the interactions for each different curve. The formula argument for GAM can only be given once, eitherte()ors() + s()` as this is for computational reasons rather than to aid fit. You can still plot the INLA mesh elements but not output the meshes.

GAM regression

For multi-parameter, the user can select 3 possible methods. If method = "GAM" (BCEA will accept also "gam", "G" or "g"), then the computations are based on GAM regression. The user can also specify the formula for the regression. The default option is to use a tensor product (e.g. if there are two main parameters, p1 and p2, this amounts to setting formula = "te(p1,p2)", which indicates that the two parameters interact). Alternatively, it is possible to specify a model in which the parameters are independent using the notation formula = "s(p1) + s(p2)". This may lead to worse accuracy in the estimates.

Strong et al. GP regression

This is used if method="GP" (BCEA will also accept the specification method="gp"). In this case, the user can also specify the number of PSA runs that should be used to estimate the hyperparameters of the model (e.g. n.sim=100). This value is set by default to 500.

These are all rather technical and are described in detail in Baio et al. (2017). The optional parameter vector int.ord can take integer values (c(1,1) is default) and will force the predictor to include interactions: if int.ord = c(k, h), then all k-way interactions will be used for the effects and all h-way interactions will be used for the costs. Also, the user can specify the feature of the mesh for the "spatial" part of the model. The optional parameter cutoff (default 0.3) controls the density of the points inside the mesh. Acceptable values are typically in the interval (0.1, 0.5), with lower values implying more points (and thus better approximation and greater computational time). The construction of the boundaries for the mesh can be controlled by the optional inputs convex.inner (default = -0.4) and convex.outer (default = -0.7). These should be negative values and can be decreased (say to -0.7 and -1, respectively) to increase the distance between the points and the outer boundary, which also increases precision and computational time. The optional argumentrobust can be set to TRUE, in which case INLA will use a t prior distribution for the coefficients of the linear predictor. Finally, the user can control the accuracy of the INLA grid-search for the estimation of the hyperparameters. This is done by setting a value h.value (default = 0.00005). Lower values imply a more refined search (and hence better accuracy), at the expense of computational speed. The method argument can also be given as a list allowing different regression methods for the effects and costs, and the different incremental decisions. The first list element should contain a vector of methods for the incremental effects and the second for the costs, for example method = list(c("GAM"), c("INLA")). The int.ord argument can also be given as a list to give different interaction levels for each regression curve.

By default, when no method is specified by the user, evppi will use GAM if the number of parameters is <5 and INLA otherwise.

References

Strong M, Oakley JE, Brennan A (2014). “Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample : A Nonparametric Regression Approach.” Medical Decision Making, 311--326. doi:10.1177/0272989X13505910 .

Sadatsafavi M, Bansback N, Zafari Z, Najafzadeh M, Marra C (2013). “Need for speed: An efficient algorithm for calculation of single-parameter expected value of partial perfect information.” Value Heal., 16(2), 438--448. ISSN 10983015, doi:10.1016/j.jval.2012.10.018 , http://dx.doi.org/10.1016/j.jval.2012.10.018.

Baio G (2013). Bayesian Methods in Health Economics. CRC.

Baio, Gianluca, Berardi, Andrea, Heath A (2017). Bayesian Cost-Effectiveness Analysis with the R package BCEA. Springer International Publishing. https://link.springer.com/book/10.1007/978-3-319-55718-2.

Heath A, Manolopoulou I, Baio G (2016). “Estimating the expected value of partial perfect information in health economic evaluations using integrated nested Laplace approximation.” Stat. Med., 35(23), 4264--4280. ISSN 0277-6715, doi:10.1002/sim.6983 , 1504.05436, https://pubmed.ncbi.nlm.nih.gov/27189534/.

See also

Author

Anna Heath, Gianluca Baio

Examples

# See Baio G., Dawid A.P. (2011) for a detailed description of the 
# Bayesian model and economic problem

if (FALSE) {
# Load the post-processed results of the MCMC simulation model
# original JAGS output is can be downloaded from here
# https://gianluca.statistica.it/book/bcea/code/vaccine.RData

data(Vaccine, package = "BCEA")
treats <- c("Status quo", "Vaccination")

# Run the health economic evaluation using BCEA
m <- bcea(e.pts, c.pts, ref = 2, interventions = treats)

# Compute the EVPPI for a bunch of parameters
inp <- createInputs(vaccine_mat)

EVPPI <- evppi(m, c("beta.1." , "beta.2."), inp$mat)

plot(EVPPI)

# deprecated (single parameter) methods
EVPPI.so <- evppi(m, c("beta.1.", "beta.2."), inp$mat, method = "so", n.blocks = 50)
EVPPI.sad <- evppi(m, c("beta.1.", "beta.2."), inp$mat, method = "sad", n.seps = 1)

plot(EVPPI.so)
plot(EVPPI.sad)
 
# Compute the EVPPI using INLA/SPDE
if (require("INLA"))
  x_inla <- evppi(he = m, 39:40, input = inp$mat)

# using GAM regression
x_gam <- evppi(he = m, 39:40, input = inp$mat, method = "GAM")

# using Strong et al GP regression
x_gp <- evppi(he = m, 39:40, input = inp$mat, method = "GP")

# plot results
if (require("INLA")) plot(x_inla)
points(x_inla$k, x_inla$evppi, type = "l", lwd = 2, lty = 2)
points(x_gam$k, x_gam$evppi, type = "l", col = "red")
points(x_gp$k, x_gp$evppi, type = "l", col = "blue")

if (require("INLA")) {
  plot(x_inla$k, x_inla$evppi, type = "l", lwd = 2, lty = 2)
  points(x_gam$k, x_gam$evppi, type = "l", col = "red")
  points(x_gp$k, x_gp$evppi, type = "l", col = "blue")
}

data(Smoking)
treats <- c("No intervention", "Self-help",
"Individual counselling", "Group counselling")
m <- bcea(eff, cost, ref = 4, interventions = treats, Kmax = 500)
inp <- createInputs(smoking_output)
EVPPI <- evppi(m, c(2,3), inp$mat, h.value = 0.0000005)
plot(EVPPI)
}

data(Vaccine, package = "BCEA")
treats <- c("Status quo", "Vaccination")
bcea_vacc <- bcea(e.pts, c.pts, ref = 2, interventions = treats)
inp <- createInputs(vaccine_mat)
#>  [1] "14 \nLinear dependence: removing column pi.2.2."
#>  [2] "15 \nLinear dependence: removing column pi.2.2."
#>  [3] "16 \nLinear dependence: removing column pi.2.2."
#>  [4] "17 \nLinear dependence: removing column pi.2.2."
#>  [5] "18 \nLinear dependence: removing column pi.2.2."
#>  [6] "19 \nLinear dependence: removing column pi.2.2."
#>  [7] "20 \nLinear dependence: removing column pi.2.2."
#>  [8] "21 \nLinear dependence: removing column pi.2.2."
#>  [9] "22 \nLinear dependence: removing column pi.2.2."
#> [10] "29 \nLinear dependence: removing column pi.2.2."
#> [11] "44 \nLinear dependence: removing column pi.2.2."
#> [12] "45 \nLinear dependence: removing column pi.2.2."
#> [13] "46 \nLinear dependence: removing column pi.2.2."
#> [14] "47 \nLinear dependence: removing column pi.2.2."
#>  [1] "14 \nLinear dependence: removing column pi.2.1."
#>  [2] "15 \nLinear dependence: removing column pi.2.1."
#>  [3] "16 \nLinear dependence: removing column pi.2.1."
#>  [4] "17 \nLinear dependence: removing column pi.2.1."
#>  [5] "18 \nLinear dependence: removing column pi.2.1."
#>  [6] "19 \nLinear dependence: removing column pi.2.1."
#>  [7] "20 \nLinear dependence: removing column pi.2.1."
#>  [8] "21 \nLinear dependence: removing column pi.2.1."
#>  [9] "22 \nLinear dependence: removing column pi.2.1."
#> [10] "29 \nLinear dependence: removing column pi.2.1."
#> [11] "44 \nLinear dependence: removing column pi.2.1."
#> [12] "45 \nLinear dependence: removing column pi.2.1."
#>  [1] "14 \nLinear dependence: removing column pi.1.1."
#>  [2] "15 \nLinear dependence: removing column pi.1.1."
#>  [3] "16 \nLinear dependence: removing column pi.1.1."
#>  [4] "17 \nLinear dependence: removing column pi.1.1."
#>  [5] "18 \nLinear dependence: removing column pi.1.1."
#>  [6] "19 \nLinear dependence: removing column pi.1.1."
#>  [7] "20 \nLinear dependence: removing column pi.1.1."
#>  [8] "21 \nLinear dependence: removing column pi.1.1."
#>  [9] "22 \nLinear dependence: removing column pi.1.1."
#> [10] "29 \nLinear dependence: removing column pi.1.1."
#> [11] "44 \nLinear dependence: removing column pi.1.1."
#> [1] "14 \nLinear dependence: removing column Repeat.GP.2.2."
#> [2] "15 \nLinear dependence: removing column Repeat.GP.2.2."
#> [3] "16 \nLinear dependence: removing column Repeat.GP.2.2."
#> [4] "17 \nLinear dependence: removing column Repeat.GP.2.2."
#> [5] "18 \nLinear dependence: removing column Repeat.GP.2.2."
#> [6] "19 \nLinear dependence: removing column Repeat.GP.2.2."
#> [7] "20 \nLinear dependence: removing column Repeat.GP.2.2."
#> [8] "21 \nLinear dependence: removing column Repeat.GP.2.2."
#> [9] "22 \nLinear dependence: removing column Repeat.GP.2.2."
#> [1] "14 \nLinear dependence: removing column Repeat.GP.2.1."
#> [2] "15 \nLinear dependence: removing column Repeat.GP.2.1."
#> [3] "17 \nLinear dependence: removing column Repeat.GP.2.1."
#> [4] "18 \nLinear dependence: removing column Repeat.GP.2.1."
#> [5] "20 \nLinear dependence: removing column Repeat.GP.2.1."
#> [6] "21 \nLinear dependence: removing column Repeat.GP.2.1."
#> [1] "14 \nLinear dependence: removing column Repeat.GP.1.1."
#> [2] "17 \nLinear dependence: removing column Repeat.GP.1.1."
#> [3] "20 \nLinear dependence: removing column Repeat.GP.1.1."
evppi(bcea_vacc, c("beta.1.", "beta.2."), inp$mat)
#> $evppi
#>   [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>   [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [11] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [16] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [26] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [31] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.457218e-05
#>  [36] 9.285676e-05 1.611413e-04 2.294259e-04 2.977105e-04 3.659951e-04
#>  [41] 4.342796e-04 5.025642e-04 5.708488e-04 6.391333e-04 7.074179e-04
#>  [46] 8.359579e-04 9.696656e-04 1.103373e-03 1.237081e-03 1.370789e-03
#>  [51] 1.504497e-03 1.670549e-03 1.859133e-03 2.047718e-03 2.236302e-03
#>  [56] 2.424887e-03 2.613472e-03 2.802056e-03 2.990641e-03 3.179226e-03
#>  [61] 3.388697e-03 3.632914e-03 3.877131e-03 4.139327e-03 4.557299e-03
#>  [66] 5.018772e-03 5.518913e-03 6.019054e-03 6.519195e-03 7.072839e-03
#>  [71] 7.631472e-03 8.238981e-03 8.914107e-03 9.667252e-03 1.050133e-02
#>  [76] 1.136910e-02 1.233047e-02 1.330277e-02 1.435958e-02 1.545712e-02
#>  [81] 1.665844e-02 1.791987e-02 1.926646e-02 2.069755e-02 2.215719e-02
#>  [86] 2.365858e-02 2.536231e-02 2.721777e-02 2.926248e-02 3.142167e-02
#>  [91] 3.366613e-02 3.594727e-02 3.828947e-02 4.066173e-02 4.308486e-02
#>  [96] 4.554495e-02 4.810142e-02 5.076759e-02 5.354944e-02 5.645627e-02
#> [101] 5.953500e-02 6.272953e-02 6.605710e-02 6.946561e-02 7.299518e-02
#> [106] 7.661519e-02 8.044882e-02 8.454452e-02 8.880028e-02 9.316356e-02
#> [111] 9.757211e-02 1.020631e-01 1.066899e-01 1.115583e-01 1.165761e-01
#> [116] 1.217236e-01 1.269848e-01 1.324089e-01 1.379159e-01 1.435288e-01
#> [121] 1.492557e-01 1.550713e-01 1.610079e-01 1.670532e-01 1.733199e-01
#> [126] 1.797311e-01 1.862892e-01 1.929569e-01 1.998673e-01 2.069650e-01
#> [131] 2.141277e-01 2.214818e-01 2.290093e-01 2.366830e-01 2.444225e-01
#> [136] 2.522186e-01 2.601369e-01 2.681379e-01 2.761958e-01 2.844056e-01
#> [141] 2.927010e-01 3.011088e-01 3.096150e-01 3.182103e-01 3.270021e-01
#> [146] 3.359932e-01 3.451267e-01 3.543843e-01 3.637561e-01 3.733013e-01
#> [151] 3.829607e-01 3.927341e-01 4.026574e-01 4.127028e-01 4.228980e-01
#> [156] 4.332371e-01 4.437379e-01 4.544137e-01 4.651813e-01 4.761334e-01
#> [161] 4.872191e-01 4.984766e-01 5.098566e-01 5.214073e-01 5.330834e-01
#> [166] 5.449266e-01 5.569304e-01 5.690002e-01 5.812412e-01 5.936338e-01
#> [171] 6.061169e-01 6.187243e-01 6.314361e-01 6.442246e-01 6.570961e-01
#> [176] 6.700288e-01 6.830269e-01 6.960982e-01 7.092648e-01 7.225512e-01
#> [181] 7.358751e-01 7.492499e-01 7.627448e-01 7.763942e-01 7.901216e-01
#> [186] 8.039977e-01 8.179865e-01 8.320791e-01 8.462536e-01 8.605366e-01
#> [191] 8.749299e-01 8.893719e-01 9.039347e-01 9.186171e-01 9.334328e-01
#> [196] 9.483216e-01 9.632936e-01 9.783535e-01 9.935304e-01 1.008831e+00
#> [201] 1.024234e+00 1.039745e+00 1.055422e+00 1.071224e+00 1.084066e+00
#> [206] 1.074809e+00 1.065660e+00 1.056641e+00 1.047729e+00 1.038873e+00
#> [211] 1.030071e+00 1.021314e+00 1.012653e+00 1.004120e+00 9.956920e-01
#> [216] 9.872935e-01 9.789248e-01 9.706356e-01 9.623851e-01 9.542037e-01
#> [221] 9.461404e-01 9.381714e-01 9.302605e-01 9.224375e-01 9.147457e-01
#> [226] 9.071125e-01 8.995306e-01 8.919891e-01 8.844713e-01 8.770460e-01
#> [231] 8.697233e-01 8.625451e-01 8.554401e-01 8.483837e-01 8.413724e-01
#> [236] 8.344054e-01 8.275071e-01 8.206365e-01 8.138200e-01 8.071060e-01
#> [241] 8.004723e-01 7.938925e-01 7.873783e-01 7.809368e-01 7.745497e-01
#> [246] 7.682354e-01 7.619523e-01 7.557112e-01 7.495586e-01 7.434515e-01
#> [251] 7.374292e-01 7.314887e-01 7.256113e-01 7.197572e-01 7.139554e-01
#> [256] 7.081910e-01 7.024605e-01 6.967964e-01 6.912702e-01 6.858125e-01
#> [261] 6.804006e-01 6.750311e-01 6.697037e-01 6.644020e-01 6.591274e-01
#> [266] 6.539432e-01 6.488189e-01 6.437494e-01 6.387192e-01 6.337315e-01
#> [271] 6.287676e-01 6.238712e-01 6.190358e-01 6.143003e-01 6.096329e-01
#> [276] 6.050127e-01 6.004741e-01 5.960047e-01 5.915586e-01 5.871403e-01
#> [281] 5.827532e-01 5.783884e-01 5.740675e-01 5.697920e-01 5.655458e-01
#> [286] 5.613352e-01 5.571441e-01 5.529855e-01 5.488534e-01 5.447722e-01
#> [291] 5.406968e-01 5.366213e-01 5.325726e-01 5.285423e-01 5.245240e-01
#> [296] 5.205150e-01 5.165845e-01 5.126795e-01 5.088076e-01 5.049948e-01
#> [301] 5.012110e-01 4.975225e-01 4.938624e-01 4.902186e-01 4.865747e-01
#> [306] 4.829573e-01 4.794062e-01 4.758743e-01 4.723592e-01 4.688739e-01
#> [311] 4.654132e-01 4.619793e-01 4.585647e-01 4.551584e-01 4.517521e-01
#> [316] 4.483486e-01 4.449656e-01 4.416163e-01 4.383141e-01 4.350518e-01
#> [321] 4.318246e-01 4.286196e-01 4.254631e-01 4.223070e-01 4.191951e-01
#> [326] 4.161302e-01 4.131096e-01 4.101110e-01 4.071347e-01 4.041827e-01
#> [331] 4.012589e-01 3.983743e-01 3.955212e-01 3.927254e-01 3.899432e-01
#> [336] 3.871855e-01 3.844689e-01 3.817796e-01 3.791394e-01 3.765335e-01
#> [341] 3.739600e-01 3.714164e-01 3.688934e-01 3.663704e-01 3.638535e-01
#> [346] 3.613474e-01 3.588413e-01 3.563576e-01 3.539089e-01 3.514843e-01
#> [351] 3.490616e-01 3.466548e-01 3.442652e-01 3.418779e-01 3.395314e-01
#> [356] 3.372204e-01 3.349244e-01 3.326430e-01 3.303822e-01 3.281223e-01
#> [361] 3.258784e-01 3.236347e-01 3.214071e-01 3.191795e-01 3.169807e-01
#> [366] 3.148009e-01 3.126353e-01 3.105210e-01 3.084279e-01 3.063603e-01
#> [371] 3.043336e-01 3.023203e-01 3.003220e-01 2.983323e-01 2.963581e-01
#> [376] 2.944046e-01 2.924985e-01 2.906183e-01 2.887512e-01 2.869099e-01
#> [381] 2.850765e-01 2.832430e-01 2.814097e-01 2.796030e-01 2.778181e-01
#> [386] 2.760596e-01 2.743042e-01 2.725626e-01 2.708210e-01 2.690877e-01
#> [391] 2.673614e-01 2.656351e-01 2.639213e-01 2.622214e-01 2.605248e-01
#> [396] 2.588283e-01 2.571434e-01 2.554615e-01 2.537810e-01 2.521252e-01
#> [401] 2.504935e-01 2.488892e-01 2.472959e-01 2.457275e-01 2.441923e-01
#> [406] 2.426613e-01 2.411526e-01 2.396684e-01 2.382291e-01 2.367951e-01
#> [411] 2.353736e-01 2.339666e-01 2.325611e-01 2.311557e-01 2.297563e-01
#> [416] 2.283653e-01 2.269863e-01 2.256259e-01 2.242938e-01 2.229744e-01
#> [421] 2.216551e-01 2.203358e-01 2.190165e-01 2.176971e-01 2.163804e-01
#> [426] 2.150968e-01 2.138344e-01 2.125824e-01 2.113339e-01 2.100859e-01
#> [431] 2.088515e-01 2.076339e-01 2.064492e-01 2.052776e-01 2.041179e-01
#> [436] 2.029666e-01 2.018338e-01 2.007256e-01 1.996347e-01 1.985587e-01
#> [441] 1.974892e-01 1.964197e-01 1.953502e-01 1.942885e-01 1.932456e-01
#> [446] 1.922157e-01 1.911862e-01 1.901613e-01 1.891454e-01 1.881421e-01
#> [451] 1.871387e-01 1.861354e-01 1.851410e-01 1.841523e-01 1.831884e-01
#> [456] 1.822613e-01 1.813469e-01 1.804353e-01 1.795236e-01 1.786235e-01
#> [461] 1.777250e-01 1.768265e-01 1.759280e-01 1.750408e-01 1.741682e-01
#> [466] 1.733006e-01 1.724417e-01 1.715828e-01 1.707240e-01 1.698655e-01
#> [471] 1.690192e-01 1.681822e-01 1.673487e-01 1.665152e-01 1.656817e-01
#> [476] 1.648482e-01 1.640322e-01 1.632500e-01 1.624679e-01 1.616857e-01
#> [481] 1.609060e-01 1.601366e-01 1.593672e-01 1.585978e-01 1.578284e-01
#> [486] 1.570590e-01 1.562896e-01 1.555302e-01 1.547736e-01 1.540170e-01
#> [491] 1.532604e-01 1.525038e-01 1.517472e-01 1.509906e-01 1.502340e-01
#> [496] 1.494882e-01 1.487427e-01 1.479973e-01 1.472519e-01 1.465064e-01
#> [501] 1.457650e-01
#> 
#> $index
#> [1] "beta.1." "beta.2."
#> 
#> $k
#>   [1]     0   100   200   300   400   500   600   700   800   900  1000  1100
#>  [13]  1200  1300  1400  1500  1600  1700  1800  1900  2000  2100  2200  2300
#>  [25]  2400  2500  2600  2700  2800  2900  3000  3100  3200  3300  3400  3500
#>  [37]  3600  3700  3800  3900  4000  4100  4200  4300  4400  4500  4600  4700
#>  [49]  4800  4900  5000  5100  5200  5300  5400  5500  5600  5700  5800  5900
#>  [61]  6000  6100  6200  6300  6400  6500  6600  6700  6800  6900  7000  7100
#>  [73]  7200  7300  7400  7500  7600  7700  7800  7900  8000  8100  8200  8300
#>  [85]  8400  8500  8600  8700  8800  8900  9000  9100  9200  9300  9400  9500
#>  [97]  9600  9700  9800  9900 10000 10100 10200 10300 10400 10500 10600 10700
#> [109] 10800 10900 11000 11100 11200 11300 11400 11500 11600 11700 11800 11900
#> [121] 12000 12100 12200 12300 12400 12500 12600 12700 12800 12900 13000 13100
#> [133] 13200 13300 13400 13500 13600 13700 13800 13900 14000 14100 14200 14300
#> [145] 14400 14500 14600 14700 14800 14900 15000 15100 15200 15300 15400 15500
#> [157] 15600 15700 15800 15900 16000 16100 16200 16300 16400 16500 16600 16700
#> [169] 16800 16900 17000 17100 17200 17300 17400 17500 17600 17700 17800 17900
#> [181] 18000 18100 18200 18300 18400 18500 18600 18700 18800 18900 19000 19100
#> [193] 19200 19300 19400 19500 19600 19700 19800 19900 20000 20100 20200 20300
#> [205] 20400 20500 20600 20700 20800 20900 21000 21100 21200 21300 21400 21500
#> [217] 21600 21700 21800 21900 22000 22100 22200 22300 22400 22500 22600 22700
#> [229] 22800 22900 23000 23100 23200 23300 23400 23500 23600 23700 23800 23900
#> [241] 24000 24100 24200 24300 24400 24500 24600 24700 24800 24900 25000 25100
#> [253] 25200 25300 25400 25500 25600 25700 25800 25900 26000 26100 26200 26300
#> [265] 26400 26500 26600 26700 26800 26900 27000 27100 27200 27300 27400 27500
#> [277] 27600 27700 27800 27900 28000 28100 28200 28300 28400 28500 28600 28700
#> [289] 28800 28900 29000 29100 29200 29300 29400 29500 29600 29700 29800 29900
#> [301] 30000 30100 30200 30300 30400 30500 30600 30700 30800 30900 31000 31100
#> [313] 31200 31300 31400 31500 31600 31700 31800 31900 32000 32100 32200 32300
#> [325] 32400 32500 32600 32700 32800 32900 33000 33100 33200 33300 33400 33500
#> [337] 33600 33700 33800 33900 34000 34100 34200 34300 34400 34500 34600 34700
#> [349] 34800 34900 35000 35100 35200 35300 35400 35500 35600 35700 35800 35900
#> [361] 36000 36100 36200 36300 36400 36500 36600 36700 36800 36900 37000 37100
#> [373] 37200 37300 37400 37500 37600 37700 37800 37900 38000 38100 38200 38300
#> [385] 38400 38500 38600 38700 38800 38900 39000 39100 39200 39300 39400 39500
#> [397] 39600 39700 39800 39900 40000 40100 40200 40300 40400 40500 40600 40700
#> [409] 40800 40900 41000 41100 41200 41300 41400 41500 41600 41700 41800 41900
#> [421] 42000 42100 42200 42300 42400 42500 42600 42700 42800 42900 43000 43100
#> [433] 43200 43300 43400 43500 43600 43700 43800 43900 44000 44100 44200 44300
#> [445] 44400 44500 44600 44700 44800 44900 45000 45100 45200 45300 45400 45500
#> [457] 45600 45700 45800 45900 46000 46100 46200 46300 46400 46500 46600 46700
#> [469] 46800 46900 47000 47100 47200 47300 47400 47500 47600 47700 47800 47900
#> [481] 48000 48100 48200 48300 48400 48500 48600 48700 48800 48900 49000 49100
#> [493] 49200 49300 49400 49500 49600 49700 49800 49900 50000
#> 
#> $evi
#>   [1] 0.03705361 0.03785587 0.03869327 0.03957261 0.04053147 0.04149032
#>   [7] 0.04249547 0.04357790 0.04468983 0.04580177 0.04696679 0.04820919
#>  [13] 0.04945159 0.05071720 0.05204083 0.05341006 0.05479360 0.05628177
#>  [19] 0.05790349 0.05968408 0.06163395 0.06371142 0.06579055 0.06796376
#>  [25] 0.07022097 0.07273816 0.07532847 0.07795127 0.08057406 0.08320268
#>  [31] 0.08589638 0.08868468 0.09152601 0.09437325 0.09732932 0.10029796
#>  [37] 0.10336608 0.10650386 0.10969266 0.11291187 0.11623517 0.11961608
#>  [43] 0.12301796 0.12655367 0.13016897 0.13389347 0.13771150 0.14164319
#>  [49] 0.14562582 0.14972633 0.15408068 0.15855398 0.16308971 0.16773032
#>  [55] 0.17246620 0.17733774 0.18240585 0.18763480 0.19302758 0.19870097
#>  [61] 0.20455777 0.21058793 0.21671040 0.22296970 0.22947367 0.23630862
#>  [67] 0.24330447 0.25039355 0.25766800 0.26518678 0.27299674 0.28116086
#>  [73] 0.28956168 0.29817600 0.30710155 0.31640030 0.32590075 0.33562984
#>  [79] 0.34549466 0.35556390 0.36586862 0.37636890 0.38722042 0.39819986
#>  [85] 0.40931334 0.42067277 0.43210667 0.44377365 0.45566760 0.46785113
#>  [91] 0.48014364 0.49246093 0.50499804 0.51762457 0.53037623 0.54325794
#>  [97] 0.55623809 0.56931969 0.58247875 0.59587792 0.60962413 0.62343508
#> [103] 0.63739430 0.65146528 0.66560388 0.67977458 0.69403487 0.70842482
#> [109] 0.72293925 0.73755255 0.75234332 0.76723566 0.78221180 0.79721725
#> [115] 0.81232276 0.82758674 0.84296480 0.85844709 0.87398274 0.88966269
#> [121] 0.90550552 0.92141819 0.93740388 0.95345109 0.96960001 0.98586393
#> [127] 1.00217636 1.01852827 1.03494208 1.05142297 1.06797820 1.08468101
#> [133] 1.10149448 1.11850610 1.13565841 1.15294406 1.17038384 1.18787278
#> [139] 1.20544370 1.22316318 1.24098583 1.25890098 1.27685790 1.29494468
#> [145] 1.31305675 1.33121282 1.34951452 1.36794968 1.38653595 1.40518347
#> [151] 1.42398997 1.44291220 1.46187667 1.48090091 1.49998386 1.51913333
#> [157] 1.53842038 1.55785893 1.57742357 1.59708499 1.61685411 1.63671449
#> [163] 1.65661087 1.67656286 1.69652816 1.71649345 1.73649008 1.75651452
#> [169] 1.77658853 1.79668980 1.81684907 1.83704353 1.85732385 1.87768519
#> [175] 1.89813142 1.91868758 1.93931951 1.95998689 1.98070096 2.00151878
#> [181] 2.02248963 2.04353027 2.06465898 2.08582184 2.10699995 2.12828009
#> [187] 2.14966652 2.17114009 2.19267665 2.21423926 2.23585252 2.25753717
#> [193] 2.27924027 2.30098203 2.32278791 2.34466165 2.36659499 2.38854408
#> [199] 2.41055686 2.43261442 2.45475044 2.47693925 2.49917875 2.52143631
#> [205] 2.54070684 2.53787999 2.53506303 2.53229036 2.52958762 2.52697130
#> [211] 2.52440752 2.52185173 2.51932424 2.51682773 2.51436495 2.51199912
#> [217] 2.50972006 2.50748163 2.50529882 2.50313412 2.50097250 2.49883204
#> [223] 2.49676430 2.49474058 2.49271685 2.49069313 2.48867961 2.48671075
#> [229] 2.48488026 2.48307698 2.48130197 2.47958992 2.47791258 2.47625725
#> [235] 2.47464086 2.47306603 2.47152238 2.46999548 2.46856835 2.46717635
#> [241] 2.46580518 2.46446047 2.46314796 2.46185416 2.46056499 2.45930632
#> [247] 2.45807492 2.45694841 2.45588064 2.45485168 2.45384951 2.45290828
#> [253] 2.45201256 2.45115357 2.45034345 2.44954816 2.44877788 2.44801321
#> [259] 2.44724855 2.44648588 2.44575366 2.44502992 2.44434475 2.44368189
#> [265] 2.44304942 2.44246395 2.44190999 2.44138249 2.44092506 2.44048420
#> [271] 2.44005376 2.43966976 2.43930692 2.43896298 2.43867630 2.43841126
#> [277] 2.43815833 2.43792271 2.43770326 2.43750768 2.43734001 2.43717648
#> [283] 2.43701295 2.43685240 2.43672731 2.43660228 2.43649001 2.43639935
#> [289] 2.43632504 2.43627307 2.43624400 2.43625683 2.43628988 2.43635282
#> [295] 2.43644101 2.43653657 2.43664089 2.43676890 2.43691328 2.43709723
#> [301] 2.43728708 2.43747693 2.43766678 2.43785663 2.43804648 2.43823633
#> [307] 2.43844428 2.43869049 2.43895177 2.43921999 2.43948822 2.43975645
#> [313] 2.44002468 2.44029291 2.44056114 2.44082937 2.44109760 2.44137953
#> [319] 2.44170391 2.44205164 2.44241982 2.44282017 2.44323328 2.44364639
#> [325] 2.44409249 2.44457061 2.44507864 2.44562174 2.44616484 2.44670794
#> [331] 2.44725127 2.44781211 2.44838171 2.44895677 2.44954877 2.45015945
#> [337] 2.45077012 2.45139695 2.45203779 2.45268564 2.45333350 2.45398136
#> [343] 2.45462922 2.45528430 2.45595980 2.45663861 2.45733166 2.45803623
#> [349] 2.45876134 2.45951256 2.46027210 2.46104954 2.46184788 2.46270278
#> [355] 2.46356630 2.46442982 2.46529334 2.46616454 2.46705682 2.46794910
#> [361] 2.46884707 2.46975739 2.47066771 2.47157803 2.47250829 2.47345963
#> [367] 2.47441097 2.47536231 2.47631365 2.47726499 2.47821633 2.47916766
#> [373] 2.48011900 2.48108604 2.48205474 2.48302345 2.48399401 2.48498194
#> [379] 2.48596986 2.48696203 2.48797773 2.48900137 2.49002501 2.49106195
#> [385] 2.49210191 2.49314802 2.49419569 2.49526209 2.49633230 2.49740252
#> [391] 2.49847482 2.49956060 2.50065377 2.50174694 2.50284011 2.50393327
#> [397] 2.50502644 2.50613166 2.50724137 2.50835109 2.50946173 2.51058409
#> [403] 2.51171324 2.51285383 2.51399442 2.51515263 2.51631514 2.51748307
#> [409] 2.51865224 2.51982141 2.52100290 2.52218565 2.52336840 2.52455115
#> [415] 2.52573390 2.52692109 2.52811219 2.52933476 2.53058895 2.53185552
#> [421] 2.53312209 2.53441819 2.53575671 2.53709574 2.53846228 2.53987875
#> [427] 2.54131648 2.54276301 2.54421702 2.54567692 2.54713737 2.54861863
#> [433] 2.55010724 2.55161064 2.55311404 2.55461744 2.55612084 2.55762424
#> [439] 2.55912764 2.56063104 2.56213444 2.56364595 2.56516720 2.56668845
#> [445] 2.56821847 2.56975283 2.57129950 2.57284964 2.57442273 2.57600088
#> [451] 2.57757903 2.57916437 2.58076660 2.58238097 2.58400753 2.58565356
#> [457] 2.58730489 2.58896026 2.59062565 2.59229225 2.59396413 2.59565871
#> [463] 2.59736472 2.59909129 2.60083599 2.60258363 2.60433128 2.60607892
#> [469] 2.60782656 2.60957421 2.61132185 2.61306949 2.61482472 2.61658627
#> [475] 2.61835210 2.62011955 2.62188699 2.62365443 2.62542187 2.62718931
#> [481] 2.62896830 2.63074890 2.63253189 2.63431941 2.63611797 2.63793732
#> [487] 2.63975777 2.64157823 2.64339903 2.64522609 2.64705546 2.64888724
#> [493] 2.65071902 2.65255080 2.65440805 2.65627824 2.65815205 2.66002586
#> [499] 2.66189967 2.66377348 2.66564729
#> 
#> $parameters
#> [1] "beta.1. and beta.2."
#> 
#> $time
#> $time$`Fitting for Effects`
#> NULL
#> 
#> $time$`Fitting for Costs`
#> NULL
#> 
#> $time$`Calculating EVPPI`
#> NULL
#> 
#> 
#> $method
#> $method$`Methods for Effects`
#> [1] "gam"
#> 
#> $method$`Methods for Costs`
#> [1] "gam"
#> 
#> 
#> $fitted.costs
#>             ...1  
#>    [1,] 5.539060 0
#>    [2,] 5.042096 0
#>    [3,] 5.420907 0
#>    [4,] 5.738414 0
#>    [5,] 5.469780 0
#>    [6,] 5.552250 0
#>    [7,] 3.622860 0
#>    [8,] 6.049415 0
#>    [9,] 5.829584 0
#>   [10,] 4.978065 0
#>   [11,] 4.429175 0
#>   [12,] 5.407992 0
#>   [13,] 6.090357 0
#>   [14,] 6.110306 0
#>   [15,] 4.868019 0
#>   [16,] 5.264807 0
#>   [17,] 5.938002 0
#>   [18,] 4.435298 0
#>   [19,] 4.992994 0
#>   [20,] 5.138636 0
#>   [21,] 5.692185 0
#>   [22,] 5.451911 0
#>   [23,] 5.696216 0
#>   [24,] 5.172949 0
#>   [25,] 4.411596 0
#>   [26,] 4.540321 0
#>   [27,] 6.219929 0
#>   [28,] 5.880996 0
#>   [29,] 5.089494 0
#>   [30,] 5.046960 0
#>   [31,] 5.684144 0
#>   [32,] 3.806804 0
#>   [33,] 5.209105 0
#>   [34,] 5.301564 0
#>   [35,] 5.106181 0
#>   [36,] 5.813065 0
#>   [37,] 4.163367 0
#>   [38,] 5.291885 0
#>   [39,] 5.057783 0
#>   [40,] 5.640054 0
#>   [41,] 5.212866 0
#>   [42,] 5.686964 0
#>   [43,] 5.509276 0
#>   [44,] 4.560746 0
#>   [45,] 5.257646 0
#>   [46,] 5.586814 0
#>   [47,] 5.714918 0
#>   [48,] 5.374325 0
#>   [49,] 5.181640 0
#>   [50,] 6.092522 0
#>   [51,] 5.040795 0
#>   [52,] 3.921548 0
#>   [53,] 6.035031 0
#>   [54,] 5.881642 0
#>   [55,] 5.361438 0
#>   [56,] 6.353782 0
#>   [57,] 5.481254 0
#>   [58,] 5.536473 0
#>   [59,] 5.249361 0
#>   [60,] 5.351821 0
#>   [61,] 4.919147 0
#>   [62,] 5.741087 0
#>   [63,] 4.555483 0
#>   [64,] 5.829663 0
#>   [65,] 4.456022 0
#>   [66,] 4.756325 0
#>   [67,] 5.156087 0
#>   [68,] 4.299859 0
#>   [69,] 4.859611 0
#>   [70,] 4.520524 0
#>   [71,] 4.270351 0
#>   [72,] 5.854351 0
#>   [73,] 4.204380 0
#>   [74,] 5.162071 0
#>   [75,] 5.889816 0
#>   [76,] 4.742549 0
#>   [77,] 5.483039 0
#>   [78,] 4.585330 0
#>   [79,] 5.076819 0
#>   [80,] 4.929809 0
#>   [81,] 5.851112 0
#>   [82,] 6.150576 0
#>   [83,] 5.039752 0
#>   [84,] 4.184469 0
#>   [85,] 5.557155 0
#>   [86,] 3.080087 0
#>   [87,] 5.447201 0
#>   [88,] 5.299291 0
#>   [89,] 4.586296 0
#>   [90,] 5.248812 0
#>   [91,] 3.693466 0
#>   [92,] 4.814863 0
#>   [93,] 5.685345 0
#>   [94,] 4.713743 0
#>   [95,] 4.499628 0
#>   [96,] 3.619984 0
#>   [97,] 4.879671 0
#>   [98,] 4.647593 0
#>   [99,] 5.920827 0
#>  [100,] 6.020268 0
#>  [101,] 4.651883 0
#>  [102,] 5.377532 0
#>  [103,] 5.025746 0
#>  [104,] 4.793158 0
#>  [105,] 3.982976 0
#>  [106,] 4.550494 0
#>  [107,] 5.395733 0
#>  [108,] 5.616294 0
#>  [109,] 6.198823 0
#>  [110,] 6.239986 0
#>  [111,] 4.160499 0
#>  [112,] 5.684216 0
#>  [113,] 6.312563 0
#>  [114,] 4.996849 0
#>  [115,] 4.215937 0
#>  [116,] 4.857364 0
#>  [117,] 4.417169 0
#>  [118,] 3.308411 0
#>  [119,] 4.758624 0
#>  [120,] 5.334703 0
#>  [121,] 5.117974 0
#>  [122,] 5.452513 0
#>  [123,] 5.616120 0
#>  [124,] 5.031824 0
#>  [125,] 5.906992 0
#>  [126,] 5.201315 0
#>  [127,] 5.199154 0
#>  [128,] 6.321913 0
#>  [129,] 5.327667 0
#>  [130,] 4.656508 0
#>  [131,] 5.418207 0
#>  [132,] 5.610628 0
#>  [133,] 4.035627 0
#>  [134,] 4.090451 0
#>  [135,] 5.323000 0
#>  [136,] 5.161108 0
#>  [137,] 5.628860 0
#>  [138,] 6.002209 0
#>  [139,] 5.940414 0
#>  [140,] 5.951488 0
#>  [141,] 4.155158 0
#>  [142,] 4.305728 0
#>  [143,] 5.811871 0
#>  [144,] 3.968335 0
#>  [145,] 4.683313 0
#>  [146,] 4.813944 0
#>  [147,] 5.717913 0
#>  [148,] 3.841804 0
#>  [149,] 5.448253 0
#>  [150,] 6.119106 0
#>  [151,] 5.366319 0
#>  [152,] 5.886763 0
#>  [153,] 6.044123 0
#>  [154,] 5.484369 0
#>  [155,] 5.156000 0
#>  [156,] 6.495019 0
#>  [157,] 5.582958 0
#>  [158,] 4.897245 0
#>  [159,] 5.068719 0
#>  [160,] 4.308136 0
#>  [161,] 4.848514 0
#>  [162,] 4.541059 0
#>  [163,] 5.500579 0
#>  [164,] 5.744604 0
#>  [165,] 4.803044 0
#>  [166,] 4.975764 0
#>  [167,] 5.303851 0
#>  [168,] 5.046976 0
#>  [169,] 5.036179 0
#>  [170,] 4.239431 0
#>  [171,] 6.274060 0
#>  [172,] 4.101257 0
#>  [173,] 6.202505 0
#>  [174,] 4.269867 0
#>  [175,] 5.798713 0
#>  [176,] 4.612728 0
#>  [177,] 5.447640 0
#>  [178,] 5.744765 0
#>  [179,] 4.769053 0
#>  [180,] 5.942330 0
#>  [181,] 4.969693 0
#>  [182,] 5.259084 0
#>  [183,] 5.637955 0
#>  [184,] 5.069238 0
#>  [185,] 6.448760 0
#>  [186,] 5.282090 0
#>  [187,] 4.093503 0
#>  [188,] 4.514099 0
#>  [189,] 6.195264 0
#>  [190,] 5.580690 0
#>  [191,] 5.291420 0
#>  [192,] 5.241205 0
#>  [193,] 4.601338 0
#>  [194,] 4.753936 0
#>  [195,] 4.537685 0
#>  [196,] 3.874407 0
#>  [197,] 6.430400 0
#>  [198,] 5.854666 0
#>  [199,] 3.407401 0
#>  [200,] 4.170614 0
#>  [201,] 5.680480 0
#>  [202,] 5.705507 0
#>  [203,] 4.802852 0
#>  [204,] 5.122291 0
#>  [205,] 5.146346 0
#>  [206,] 4.268045 0
#>  [207,] 5.107833 0
#>  [208,] 6.245946 0
#>  [209,] 4.418758 0
#>  [210,] 4.432187 0
#>  [211,] 4.216319 0
#>  [212,] 5.158100 0
#>  [213,] 5.057736 0
#>  [214,] 4.340614 0
#>  [215,] 5.221258 0
#>  [216,] 4.560710 0
#>  [217,] 5.550095 0
#>  [218,] 6.486105 0
#>  [219,] 5.039445 0
#>  [220,] 5.324935 0
#>  [221,] 5.279964 0
#>  [222,] 5.281816 0
#>  [223,] 5.442170 0
#>  [224,] 6.229507 0
#>  [225,] 6.021018 0
#>  [226,] 5.391458 0
#>  [227,] 5.515263 0
#>  [228,] 4.397692 0
#>  [229,] 5.562380 0
#>  [230,] 5.478475 0
#>  [231,] 4.886453 0
#>  [232,] 5.725884 0
#>  [233,] 5.616004 0
#>  [234,] 5.918790 0
#>  [235,] 5.738133 0
#>  [236,] 5.455824 0
#>  [237,] 5.012434 0
#>  [238,] 4.565855 0
#>  [239,] 4.845516 0
#>  [240,] 4.021740 0
#>  [241,] 4.278009 0
#>  [242,] 5.138652 0
#>  [243,] 5.719739 0
#>  [244,] 5.738399 0
#>  [245,] 5.538478 0
#>  [246,] 6.272382 0
#>  [247,] 5.937437 0
#>  [248,] 4.974556 0
#>  [249,] 5.439875 0
#>  [250,] 4.486892 0
#>  [251,] 6.008683 0
#>  [252,] 5.907629 0
#>  [253,] 5.868258 0
#>  [254,] 4.686085 0
#>  [255,] 4.894189 0
#>  [256,] 4.890957 0
#>  [257,] 4.778962 0
#>  [258,] 5.495533 0
#>  [259,] 5.281087 0
#>  [260,] 5.177108 0
#>  [261,] 5.755615 0
#>  [262,] 4.332822 0
#>  [263,] 5.036257 0
#>  [264,] 5.156907 0
#>  [265,] 5.848136 0
#>  [266,] 5.232010 0
#>  [267,] 5.015574 0
#>  [268,] 5.783073 0
#>  [269,] 4.887681 0
#>  [270,] 3.879547 0
#>  [271,] 6.770099 0
#>  [272,] 5.724358 0
#>  [273,] 5.056678 0
#>  [274,] 6.084100 0
#>  [275,] 5.550148 0
#>  [276,] 4.605858 0
#>  [277,] 4.533346 0
#>  [278,] 6.586399 0
#>  [279,] 5.475804 0
#>  [280,] 3.999786 0
#>  [281,] 4.821916 0
#>  [282,] 5.428940 0
#>  [283,] 4.965619 0
#>  [284,] 5.156365 0
#>  [285,] 5.471457 0
#>  [286,] 4.532253 0
#>  [287,] 5.128821 0
#>  [288,] 4.376665 0
#>  [289,] 4.789164 0
#>  [290,] 5.531183 0
#>  [291,] 5.021224 0
#>  [292,] 3.982473 0
#>  [293,] 5.900801 0
#>  [294,] 5.613028 0
#>  [295,] 4.501413 0
#>  [296,] 5.369793 0
#>  [297,] 5.445729 0
#>  [298,] 6.061728 0
#>  [299,] 5.816942 0
#>  [300,] 4.346642 0
#>  [301,] 4.780172 0
#>  [302,] 5.473171 0
#>  [303,] 6.469736 0
#>  [304,] 5.021547 0
#>  [305,] 4.293773 0
#>  [306,] 4.854917 0
#>  [307,] 4.440534 0
#>  [308,] 5.045389 0
#>  [309,] 6.169920 0
#>  [310,] 6.011702 0
#>  [311,] 5.694597 0
#>  [312,] 6.806970 0
#>  [313,] 5.171469 0
#>  [314,] 4.848553 0
#>  [315,] 4.822993 0
#>  [316,] 4.723618 0
#>  [317,] 4.188315 0
#>  [318,] 5.085701 0
#>  [319,] 5.133842 0
#>  [320,] 5.504449 0
#>  [321,] 5.652670 0
#>  [322,] 4.303276 0
#>  [323,] 4.760278 0
#>  [324,] 5.363784 0
#>  [325,] 5.513805 0
#>  [326,] 5.720236 0
#>  [327,] 5.606547 0
#>  [328,] 5.042369 0
#>  [329,] 5.249603 0
#>  [330,] 5.670955 0
#>  [331,] 5.067745 0
#>  [332,] 5.798864 0
#>  [333,] 4.193601 0
#>  [334,] 5.219055 0
#>  [335,] 4.774512 0
#>  [336,] 6.295426 0
#>  [337,] 5.539983 0
#>  [338,] 5.925282 0
#>  [339,] 4.844867 0
#>  [340,] 5.329984 0
#>  [341,] 4.360776 0
#>  [342,] 5.011469 0
#>  [343,] 5.246450 0
#>  [344,] 6.041730 0
#>  [345,] 5.877811 0
#>  [346,] 4.485290 0
#>  [347,] 4.669637 0
#>  [348,] 5.287495 0
#>  [349,] 5.415794 0
#>  [350,] 5.186906 0
#>  [351,] 4.341641 0
#>  [352,] 5.507438 0
#>  [353,] 4.759675 0
#>  [354,] 4.790569 0
#>  [355,] 5.565071 0
#>  [356,] 5.529241 0
#>  [357,] 5.019743 0
#>  [358,] 3.817816 0
#>  [359,] 4.136043 0
#>  [360,] 4.792871 0
#>  [361,] 4.785833 0
#>  [362,] 4.566678 0
#>  [363,] 4.619853 0
#>  [364,] 5.273044 0
#>  [365,] 6.009045 0
#>  [366,] 6.257479 0
#>  [367,] 4.815202 0
#>  [368,] 5.350234 0
#>  [369,] 5.271335 0
#>  [370,] 5.173084 0
#>  [371,] 4.853887 0
#>  [372,] 5.069487 0
#>  [373,] 5.449406 0
#>  [374,] 4.084644 0
#>  [375,] 4.819726 0
#>  [376,] 5.752519 0
#>  [377,] 4.884872 0
#>  [378,] 5.266579 0
#>  [379,] 4.680861 0
#>  [380,] 4.059640 0
#>  [381,] 5.693785 0
#>  [382,] 5.764346 0
#>  [383,] 4.690388 0
#>  [384,] 5.433501 0
#>  [385,] 5.338777 0
#>  [386,] 3.719235 0
#>  [387,] 4.696649 0
#>  [388,] 4.045716 0
#>  [389,] 5.553352 0
#>  [390,] 4.880399 0
#>  [391,] 6.413306 0
#>  [392,] 5.858073 0
#>  [393,] 5.817244 0
#>  [394,] 4.459265 0
#>  [395,] 5.412586 0
#>  [396,] 4.828992 0
#>  [397,] 5.420323 0
#>  [398,] 5.412676 0
#>  [399,] 5.166367 0
#>  [400,] 6.068486 0
#>  [401,] 4.498203 0
#>  [402,] 4.954914 0
#>  [403,] 4.772686 0
#>  [404,] 6.227671 0
#>  [405,] 4.059127 0
#>  [406,] 5.607136 0
#>  [407,] 4.914351 0
#>  [408,] 5.475194 0
#>  [409,] 5.700530 0
#>  [410,] 5.752671 0
#>  [411,] 5.496542 0
#>  [412,] 4.446989 0
#>  [413,] 6.359405 0
#>  [414,] 5.397362 0
#>  [415,] 6.078466 0
#>  [416,] 4.500891 0
#>  [417,] 5.621780 0
#>  [418,] 5.895566 0
#>  [419,] 5.339590 0
#>  [420,] 4.991008 0
#>  [421,] 5.983944 0
#>  [422,] 4.914116 0
#>  [423,] 5.382246 0
#>  [424,] 5.488874 0
#>  [425,] 4.263182 0
#>  [426,] 5.410025 0
#>  [427,] 5.832342 0
#>  [428,] 5.321753 0
#>  [429,] 6.225024 0
#>  [430,] 4.514543 0
#>  [431,] 4.872656 0
#>  [432,] 5.517399 0
#>  [433,] 4.238021 0
#>  [434,] 4.959032 0
#>  [435,] 5.232736 0
#>  [436,] 4.372003 0
#>  [437,] 5.104239 0
#>  [438,] 4.925713 0
#>  [439,] 4.349524 0
#>  [440,] 5.688364 0
#>  [441,] 5.272597 0
#>  [442,] 5.058150 0
#>  [443,] 4.905186 0
#>  [444,] 5.116603 0
#>  [445,] 4.976429 0
#>  [446,] 5.464805 0
#>  [447,] 4.937833 0
#>  [448,] 4.015283 0
#>  [449,] 4.834030 0
#>  [450,] 4.277362 0
#>  [451,] 4.639724 0
#>  [452,] 4.542908 0
#>  [453,] 4.881269 0
#>  [454,] 6.274252 0
#>  [455,] 5.999787 0
#>  [456,] 4.200631 0
#>  [457,] 4.811412 0
#>  [458,] 5.685109 0
#>  [459,] 4.970131 0
#>  [460,] 5.056624 0
#>  [461,] 4.144599 0
#>  [462,] 5.201531 0
#>  [463,] 6.442667 0
#>  [464,] 6.273942 0
#>  [465,] 4.569216 0
#>  [466,] 5.283486 0
#>  [467,] 5.640554 0
#>  [468,] 4.780244 0
#>  [469,] 5.129521 0
#>  [470,] 4.252870 0
#>  [471,] 4.624672 0
#>  [472,] 4.500011 0
#>  [473,] 4.555120 0
#>  [474,] 4.559019 0
#>  [475,] 5.434200 0
#>  [476,] 5.627229 0
#>  [477,] 5.138669 0
#>  [478,] 3.163727 0
#>  [479,] 4.238129 0
#>  [480,] 4.734084 0
#>  [481,] 2.883787 0
#>  [482,] 5.962383 0
#>  [483,] 5.561811 0
#>  [484,] 5.758392 0
#>  [485,] 6.405401 0
#>  [486,] 5.870972 0
#>  [487,] 5.229085 0
#>  [488,] 5.601664 0
#>  [489,] 5.680402 0
#>  [490,] 2.297103 0
#>  [491,] 4.143709 0
#>  [492,] 4.338752 0
#>  [493,] 3.885268 0
#>  [494,] 6.210636 0
#>  [495,] 4.441624 0
#>  [496,] 5.282179 0
#>  [497,] 5.187344 0
#>  [498,] 6.167678 0
#>  [499,] 5.003714 0
#>  [500,] 5.034583 0
#>  [501,] 4.319677 0
#>  [502,] 5.443731 0
#>  [503,] 4.824521 0
#>  [504,] 5.669115 0
#>  [505,] 5.930372 0
#>  [506,] 4.879292 0
#>  [507,] 4.081044 0
#>  [508,] 5.643155 0
#>  [509,] 5.015277 0
#>  [510,] 4.673759 0
#>  [511,] 5.199560 0
#>  [512,] 4.378753 0
#>  [513,] 5.141009 0
#>  [514,] 5.179615 0
#>  [515,] 3.712490 0
#>  [516,] 5.237060 0
#>  [517,] 5.775917 0
#>  [518,] 4.871324 0
#>  [519,] 4.071617 0
#>  [520,] 5.994396 0
#>  [521,] 5.189757 0
#>  [522,] 5.404872 0
#>  [523,] 5.978365 0
#>  [524,] 5.152467 0
#>  [525,] 6.095778 0
#>  [526,] 5.366312 0
#>  [527,] 5.675808 0
#>  [528,] 5.342810 0
#>  [529,] 4.098486 0
#>  [530,] 6.670130 0
#>  [531,] 5.307000 0
#>  [532,] 5.600181 0
#>  [533,] 4.965255 0
#>  [534,] 4.934772 0
#>  [535,] 5.439599 0
#>  [536,] 5.413750 0
#>  [537,] 4.780892 0
#>  [538,] 4.056149 0
#>  [539,] 5.355559 0
#>  [540,] 6.725569 0
#>  [541,] 5.231151 0
#>  [542,] 5.524804 0
#>  [543,] 4.430890 0
#>  [544,] 4.043705 0
#>  [545,] 5.681395 0
#>  [546,] 4.875717 0
#>  [547,] 4.712016 0
#>  [548,] 4.337122 0
#>  [549,] 3.621597 0
#>  [550,] 5.727064 0
#>  [551,] 5.948722 0
#>  [552,] 5.218302 0
#>  [553,] 3.837108 0
#>  [554,] 6.591027 0
#>  [555,] 4.306567 0
#>  [556,] 4.690052 0
#>  [557,] 5.326873 0
#>  [558,] 4.660598 0
#>  [559,] 4.873312 0
#>  [560,] 5.546182 0
#>  [561,] 5.305335 0
#>  [562,] 5.404546 0
#>  [563,] 4.438375 0
#>  [564,] 5.551944 0
#>  [565,] 6.086414 0
#>  [566,] 5.388023 0
#>  [567,] 4.527011 0
#>  [568,] 5.351103 0
#>  [569,] 4.998643 0
#>  [570,] 5.679968 0
#>  [571,] 5.460582 0
#>  [572,] 5.545496 0
#>  [573,] 4.872348 0
#>  [574,] 5.279657 0
#>  [575,] 3.759895 0
#>  [576,] 4.235306 0
#>  [577,] 4.517857 0
#>  [578,] 5.203312 0
#>  [579,] 5.154415 0
#>  [580,] 5.603429 0
#>  [581,] 3.908157 0
#>  [582,] 4.593308 0
#>  [583,] 3.010580 0
#>  [584,] 5.598714 0
#>  [585,] 5.515450 0
#>  [586,] 4.767280 0
#>  [587,] 5.180259 0
#>  [588,] 5.251397 0
#>  [589,] 6.523599 0
#>  [590,] 6.007581 0
#>  [591,] 5.248788 0
#>  [592,] 5.081477 0
#>  [593,] 5.032266 0
#>  [594,] 3.771727 0
#>  [595,] 4.863446 0
#>  [596,] 3.972018 0
#>  [597,] 6.249646 0
#>  [598,] 4.984692 0
#>  [599,] 5.988938 0
#>  [600,] 4.848311 0
#>  [601,] 3.900215 0
#>  [602,] 4.411661 0
#>  [603,] 5.970272 0
#>  [604,] 5.920707 0
#>  [605,] 6.017723 0
#>  [606,] 6.457222 0
#>  [607,] 6.229802 0
#>  [608,] 4.678008 0
#>  [609,] 5.079349 0
#>  [610,] 4.625489 0
#>  [611,] 3.929851 0
#>  [612,] 4.150531 0
#>  [613,] 5.537036 0
#>  [614,] 5.300277 0
#>  [615,] 5.209738 0
#>  [616,] 5.093470 0
#>  [617,] 5.092428 0
#>  [618,] 5.695194 0
#>  [619,] 5.436593 0
#>  [620,] 5.447769 0
#>  [621,] 5.196907 0
#>  [622,] 4.936854 0
#>  [623,] 3.701986 0
#>  [624,] 4.726856 0
#>  [625,] 5.824369 0
#>  [626,] 5.314725 0
#>  [627,] 5.610858 0
#>  [628,] 6.044890 0
#>  [629,] 4.974855 0
#>  [630,] 5.696964 0
#>  [631,] 4.609722 0
#>  [632,] 5.117806 0
#>  [633,] 4.709817 0
#>  [634,] 4.389617 0
#>  [635,] 5.399749 0
#>  [636,] 5.801023 0
#>  [637,] 7.265691 0
#>  [638,] 5.370188 0
#>  [639,] 4.894873 0
#>  [640,] 5.493457 0
#>  [641,] 5.734250 0
#>  [642,] 4.930295 0
#>  [643,] 3.808431 0
#>  [644,] 5.976408 0
#>  [645,] 4.605815 0
#>  [646,] 4.770862 0
#>  [647,] 5.406588 0
#>  [648,] 5.105629 0
#>  [649,] 4.635775 0
#>  [650,] 6.140334 0
#>  [651,] 4.845058 0
#>  [652,] 4.863513 0
#>  [653,] 5.348916 0
#>  [654,] 6.027477 0
#>  [655,] 5.674001 0
#>  [656,] 4.764467 0
#>  [657,] 6.142376 0
#>  [658,] 5.616845 0
#>  [659,] 4.430326 0
#>  [660,] 4.810077 0
#>  [661,] 5.676379 0
#>  [662,] 4.566416 0
#>  [663,] 4.238390 0
#>  [664,] 5.096798 0
#>  [665,] 4.828042 0
#>  [666,] 5.088630 0
#>  [667,] 4.010339 0
#>  [668,] 4.288057 0
#>  [669,] 5.211723 0
#>  [670,] 4.968670 0
#>  [671,] 2.766377 0
#>  [672,] 5.870460 0
#>  [673,] 5.358856 0
#>  [674,] 4.715795 0
#>  [675,] 4.969381 0
#>  [676,] 5.061035 0
#>  [677,] 6.669621 0
#>  [678,] 5.697250 0
#>  [679,] 5.403520 0
#>  [680,] 4.633642 0
#>  [681,] 5.471435 0
#>  [682,] 5.537645 0
#>  [683,] 4.226920 0
#>  [684,] 5.837938 0
#>  [685,] 5.897236 0
#>  [686,] 4.352410 0
#>  [687,] 4.441955 0
#>  [688,] 4.034040 0
#>  [689,] 5.304813 0
#>  [690,] 5.464001 0
#>  [691,] 5.434683 0
#>  [692,] 4.740093 0
#>  [693,] 5.848070 0
#>  [694,] 4.469613 0
#>  [695,] 5.295348 0
#>  [696,] 5.495367 0
#>  [697,] 4.533725 0
#>  [698,] 4.488026 0
#>  [699,] 4.579108 0
#>  [700,] 5.184222 0
#>  [701,] 5.532139 0
#>  [702,] 5.348684 0
#>  [703,] 4.857925 0
#>  [704,] 4.428535 0
#>  [705,] 4.961068 0
#>  [706,] 4.171562 0
#>  [707,] 4.822307 0
#>  [708,] 4.816405 0
#>  [709,] 5.906019 0
#>  [710,] 4.243828 0
#>  [711,] 5.204671 0
#>  [712,] 4.472506 0
#>  [713,] 6.428801 0
#>  [714,] 5.084785 0
#>  [715,] 6.088572 0
#>  [716,] 6.576893 0
#>  [717,] 5.205091 0
#>  [718,] 5.799816 0
#>  [719,] 6.121609 0
#>  [720,] 4.649332 0
#>  [721,] 5.361074 0
#>  [722,] 5.074634 0
#>  [723,] 6.252053 0
#>  [724,] 4.302907 0
#>  [725,] 5.798890 0
#>  [726,] 5.350180 0
#>  [727,] 4.647268 0
#>  [728,] 6.114276 0
#>  [729,] 5.622424 0
#>  [730,] 5.182901 0
#>  [731,] 4.222576 0
#>  [732,] 3.700828 0
#>  [733,] 5.491781 0
#>  [734,] 5.253595 0
#>  [735,] 4.697383 0
#>  [736,] 6.103828 0
#>  [737,] 5.170336 0
#>  [738,] 6.684623 0
#>  [739,] 4.663333 0
#>  [740,] 3.903151 0
#>  [741,] 6.236383 0
#>  [742,] 4.314485 0
#>  [743,] 6.033901 0
#>  [744,] 3.881413 0
#>  [745,] 5.618228 0
#>  [746,] 4.978954 0
#>  [747,] 6.162183 0
#>  [748,] 4.310164 0
#>  [749,] 5.116185 0
#>  [750,] 5.733027 0
#>  [751,] 4.618890 0
#>  [752,] 5.701281 0
#>  [753,] 4.895392 0
#>  [754,] 5.363824 0
#>  [755,] 5.662333 0
#>  [756,] 5.373431 0
#>  [757,] 4.640231 0
#>  [758,] 5.202151 0
#>  [759,] 5.818355 0
#>  [760,] 4.155053 0
#>  [761,] 4.873889 0
#>  [762,] 4.927786 0
#>  [763,] 5.073084 0
#>  [764,] 4.400736 0
#>  [765,] 4.965303 0
#>  [766,] 5.537983 0
#>  [767,] 4.433810 0
#>  [768,] 4.860182 0
#>  [769,] 6.484561 0
#>  [770,] 4.665143 0
#>  [771,] 5.801894 0
#>  [772,] 3.931322 0
#>  [773,] 4.630796 0
#>  [774,] 5.276125 0
#>  [775,] 5.029469 0
#>  [776,] 5.402095 0
#>  [777,] 5.845203 0
#>  [778,] 6.679716 0
#>  [779,] 6.178991 0
#>  [780,] 5.863982 0
#>  [781,] 5.235262 0
#>  [782,] 5.918122 0
#>  [783,] 5.041613 0
#>  [784,] 5.892693 0
#>  [785,] 5.108219 0
#>  [786,] 4.899748 0
#>  [787,] 4.083619 0
#>  [788,] 4.707319 0
#>  [789,] 4.742773 0
#>  [790,] 5.516353 0
#>  [791,] 5.782819 0
#>  [792,] 5.560904 0
#>  [793,] 5.708047 0
#>  [794,] 4.915511 0
#>  [795,] 6.642908 0
#>  [796,] 5.432561 0
#>  [797,] 4.221304 0
#>  [798,] 3.496642 0
#>  [799,] 5.692967 0
#>  [800,] 5.722526 0
#>  [801,] 4.969542 0
#>  [802,] 5.770040 0
#>  [803,] 5.795408 0
#>  [804,] 6.427136 0
#>  [805,] 5.977338 0
#>  [806,] 4.762600 0
#>  [807,] 5.147554 0
#>  [808,] 5.035376 0
#>  [809,] 5.456191 0
#>  [810,] 5.240130 0
#>  [811,] 4.990371 0
#>  [812,] 5.899012 0
#>  [813,] 5.102199 0
#>  [814,] 5.835979 0
#>  [815,] 4.685216 0
#>  [816,] 6.633196 0
#>  [817,] 5.052105 0
#>  [818,] 4.367502 0
#>  [819,] 4.721172 0
#>  [820,] 3.904837 0
#>  [821,] 6.070173 0
#>  [822,] 5.824268 0
#>  [823,] 3.616765 0
#>  [824,] 4.774442 0
#>  [825,] 4.758659 0
#>  [826,] 5.040123 0
#>  [827,] 5.971828 0
#>  [828,] 4.621744 0
#>  [829,] 6.224164 0
#>  [830,] 5.598749 0
#>  [831,] 4.860810 0
#>  [832,] 5.042192 0
#>  [833,] 4.271244 0
#>  [834,] 5.600378 0
#>  [835,] 5.413170 0
#>  [836,] 4.810251 0
#>  [837,] 6.928535 0
#>  [838,] 3.738353 0
#>  [839,] 6.434138 0
#>  [840,] 5.639613 0
#>  [841,] 5.830245 0
#>  [842,] 5.853504 0
#>  [843,] 4.574596 0
#>  [844,] 4.602798 0
#>  [845,] 3.317075 0
#>  [846,] 5.527132 0
#>  [847,] 5.508854 0
#>  [848,] 3.817729 0
#>  [849,] 5.266908 0
#>  [850,] 4.425765 0
#>  [851,] 5.778654 0
#>  [852,] 4.959931 0
#>  [853,] 5.411868 0
#>  [854,] 5.158816 0
#>  [855,] 4.757418 0
#>  [856,] 6.047146 0
#>  [857,] 4.515698 0
#>  [858,] 5.018813 0
#>  [859,] 5.358219 0
#>  [860,] 5.323224 0
#>  [861,] 5.826494 0
#>  [862,] 4.930627 0
#>  [863,] 4.964465 0
#>  [864,] 4.775029 0
#>  [865,] 5.369395 0
#>  [866,] 4.892918 0
#>  [867,] 5.768430 0
#>  [868,] 5.894890 0
#>  [869,] 4.942648 0
#>  [870,] 3.799714 0
#>  [871,] 5.616387 0
#>  [872,] 5.541883 0
#>  [873,] 4.804498 0
#>  [874,] 5.008426 0
#>  [875,] 5.208790 0
#>  [876,] 5.837551 0
#>  [877,] 4.217789 0
#>  [878,] 5.487706 0
#>  [879,] 5.475554 0
#>  [880,] 5.505751 0
#>  [881,] 5.561145 0
#>  [882,] 5.418828 0
#>  [883,] 5.162882 0
#>  [884,] 6.034507 0
#>  [885,] 5.061147 0
#>  [886,] 5.123030 0
#>  [887,] 5.296120 0
#>  [888,] 6.749894 0
#>  [889,] 4.284905 0
#>  [890,] 5.504659 0
#>  [891,] 5.191575 0
#>  [892,] 4.460503 0
#>  [893,] 5.101404 0
#>  [894,] 4.668528 0
#>  [895,] 5.239961 0
#>  [896,] 3.837362 0
#>  [897,] 5.203490 0
#>  [898,] 5.944594 0
#>  [899,] 5.139334 0
#>  [900,] 4.748727 0
#>  [901,] 5.432095 0
#>  [902,] 5.346540 0
#>  [903,] 5.101703 0
#>  [904,] 5.135061 0
#>  [905,] 5.718616 0
#>  [906,] 4.388784 0
#>  [907,] 4.850997 0
#>  [908,] 5.499033 0
#>  [909,] 4.897684 0
#>  [910,] 6.110634 0
#>  [911,] 4.383643 0
#>  [912,] 6.041171 0
#>  [913,] 5.784723 0
#>  [914,] 4.848923 0
#>  [915,] 6.280788 0
#>  [916,] 4.969371 0
#>  [917,] 6.971834 0
#>  [918,] 4.992219 0
#>  [919,] 5.877068 0
#>  [920,] 3.683691 0
#>  [921,] 5.609882 0
#>  [922,] 4.211510 0
#>  [923,] 4.799503 0
#>  [924,] 5.366193 0
#>  [925,] 5.800135 0
#>  [926,] 4.590654 0
#>  [927,] 4.256414 0
#>  [928,] 4.852911 0
#>  [929,] 6.210713 0
#>  [930,] 5.241416 0
#>  [931,] 5.796199 0
#>  [932,] 5.025632 0
#>  [933,] 5.985846 0
#>  [934,] 3.475001 0
#>  [935,] 5.105401 0
#>  [936,] 5.745402 0
#>  [937,] 5.826111 0
#>  [938,] 5.128853 0
#>  [939,] 5.636934 0
#>  [940,] 4.390253 0
#>  [941,] 4.909419 0
#>  [942,] 5.264290 0
#>  [943,] 4.689748 0
#>  [944,] 4.324901 0
#>  [945,] 4.369503 0
#>  [946,] 5.053334 0
#>  [947,] 4.977281 0
#>  [948,] 4.869665 0
#>  [949,] 6.147270 0
#>  [950,] 4.778916 0
#>  [951,] 4.719837 0
#>  [952,] 5.581159 0
#>  [953,] 5.862596 0
#>  [954,] 6.381265 0
#>  [955,] 4.692011 0
#>  [956,] 5.124032 0
#>  [957,] 4.336472 0
#>  [958,] 3.497129 0
#>  [959,] 5.484078 0
#>  [960,] 5.226008 0
#>  [961,] 4.827766 0
#>  [962,] 3.666006 0
#>  [963,] 4.317422 0
#>  [964,] 5.181731 0
#>  [965,] 5.061074 0
#>  [966,] 5.066846 0
#>  [967,] 3.507307 0
#>  [968,] 4.491812 0
#>  [969,] 5.176884 0
#>  [970,] 4.728877 0
#>  [971,] 5.891132 0
#>  [972,] 4.872863 0
#>  [973,] 5.065135 0
#>  [974,] 4.364556 0
#>  [975,] 5.199892 0
#>  [976,] 5.849058 0
#>  [977,] 3.834479 0
#>  [978,] 5.996242 0
#>  [979,] 5.138226 0
#>  [980,] 5.336282 0
#>  [981,] 4.847854 0
#>  [982,] 5.356390 0
#>  [983,] 4.628017 0
#>  [984,] 5.339097 0
#>  [985,] 4.239180 0
#>  [986,] 5.406299 0
#>  [987,] 6.265569 0
#>  [988,] 5.355807 0
#>  [989,] 5.336739 0
#>  [990,] 5.472295 0
#>  [991,] 5.080981 0
#>  [992,] 5.001610 0
#>  [993,] 6.080408 0
#>  [994,] 5.163193 0
#>  [995,] 4.732320 0
#>  [996,] 4.400193 0
#>  [997,] 4.838222 0
#>  [998,] 4.837899 0
#>  [999,] 4.764121 0
#> [1000,] 4.937521 0
#> 
#> $fitted.effects
#>                 ...1  
#>    [1,] 1.975435e-04 0
#>    [2,] 2.511617e-04 0
#>    [3,] 2.004124e-04 0
#>    [4,] 1.567691e-04 0
#>    [5,] 1.650247e-04 0
#>    [6,] 1.708181e-04 0
#>    [7,] 4.828920e-04 0
#>    [8,] 1.002203e-04 0
#>    [9,] 1.551137e-04 0
#>   [10,] 2.861951e-04 0
#>   [11,] 3.465267e-04 0
#>   [12,] 2.154358e-04 0
#>   [13,] 1.396417e-04 0
#>   [14,] 1.273482e-04 0
#>   [15,] 2.834427e-04 0
#>   [16,] 2.357650e-04 0
#>   [17,] 1.307437e-04 0
#>   [18,] 3.862945e-04 0
#>   [19,] 2.842686e-04 0
#>   [20,] 2.437113e-04 0
#>   [21,] 1.777287e-04 0
#>   [22,] 2.091641e-04 0
#>   [23,] 1.456288e-04 0
#>   [24,] 2.492410e-04 0
#>   [25,] 3.943477e-04 0
#>   [26,] 4.025902e-04 0
#>   [27,] 9.258602e-05 0
#>   [28,] 1.448375e-04 0
#>   [29,] 2.590430e-04 0
#>   [30,] 2.777015e-04 0
#>   [31,] 1.800199e-04 0
#>   [32,] 3.998721e-04 0
#>   [33,] 2.455353e-04 0
#>   [34,] 2.302643e-04 0
#>   [35,] 2.649787e-04 0
#>   [36,] 1.659114e-04 0
#>   [37,] 3.717748e-04 0
#>   [38,] 2.323779e-04 0
#>   [39,] 2.750337e-04 0
#>   [40,] 1.849827e-04 0
#>   [41,] 2.284695e-04 0
#>   [42,] 1.792514e-04 0
#>   [43,] 1.837751e-04 0
#>   [44,] 3.555408e-04 0
#>   [45,] 2.366922e-04 0
#>   [46,] 1.916876e-04 0
#>   [47,] 1.763697e-04 0
#>   [48,] 2.204653e-04 0
#>   [49,] 2.520977e-04 0
#>   [50,] 1.219313e-04 0
#>   [51,] 2.627648e-04 0
#>   [52,] 3.875150e-04 0
#>   [53,] 1.170178e-04 0
#>   [54,] 1.254164e-04 0
#>   [55,] 2.214040e-04 0
#>   [56,] 1.136311e-04 0
#>   [57,] 2.022452e-04 0
#>   [58,] 1.949546e-04 0
#>   [59,] 2.268611e-04 0
#>   [60,] 2.147263e-04 0
#>   [61,] 2.975080e-04 0
#>   [62,] 1.733333e-04 0
#>   [63,] 3.178552e-04 0
#>   [64,] 1.433594e-04 0
#>   [65,] 3.302796e-04 0
#>   [66,] 2.827255e-04 0
#>   [67,] 2.492398e-04 0
#>   [68,] 4.157219e-04 0
#>   [69,] 2.733086e-04 0
#>   [70,] 3.363769e-04 0
#>   [71,] 3.600762e-04 0
#>   [72,] 1.310734e-04 0
#>   [73,] 3.609758e-04 0
#>   [74,] 2.434854e-04 0
#>   [75,] 1.570135e-04 0
#>   [76,] 3.245611e-04 0
#>   [77,] 2.051256e-04 0
#>   [78,] 3.640040e-04 0
#>   [79,] 2.566758e-04 0
#>   [80,] 3.028634e-04 0
#>   [81,] 1.524282e-04 0
#>   [82,] 6.259374e-05 0
#>   [83,] 2.678292e-04 0
#>   [84,] 3.481063e-04 0
#>   [85,] 1.883211e-04 0
#>   [86,] 4.752218e-04 0
#>   [87,] 2.067999e-04 0
#>   [88,] 2.306224e-04 0
#>   [89,] 3.616574e-04 0
#>   [90,] 2.400364e-04 0
#>   [91,] 4.177392e-04 0
#>   [92,] 3.056717e-04 0
#>   [93,] 1.792865e-04 0
#>   [94,] 3.033813e-04 0
#>   [95,] 3.545970e-04 0
#>   [96,] 4.244013e-04 0
#>   [97,] 2.964588e-04 0
#>   [98,] 2.783357e-04 0
#>   [99,] 1.549978e-04 0
#>  [100,] 1.329442e-04 0
#>  [101,] 3.144941e-04 0
#>  [102,] 1.994858e-04 0
#>  [103,] 2.571308e-04 0
#>  [104,] 2.998310e-04 0
#>  [105,] 4.693664e-04 0
#>  [106,] 3.503982e-04 0
#>  [107,] 2.109557e-04 0
#>  [108,] 1.244515e-04 0
#>  [109,] 1.043423e-04 0
#>  [110,] 9.446704e-05 0
#>  [111,] 4.354838e-04 0
#>  [112,] 1.411557e-04 0
#>  [113,] 1.010410e-04 0
#>  [114,] 2.662302e-04 0
#>  [115,] 3.827642e-04 0
#>  [116,] 2.860066e-04 0
#>  [117,] 3.456195e-04 0
#>  [118,] 4.607074e-04 0
#>  [119,] 3.083764e-04 0
#>  [120,] 2.245771e-04 0
#>  [121,] 2.565798e-04 0
#>  [122,] 2.068667e-04 0
#>  [123,] 1.829826e-04 0
#>  [124,] 2.726766e-04 0
#>  [125,] 1.142073e-04 0
#>  [126,] 2.443220e-04 0
#>  [127,] 2.217672e-04 0
#>  [128,] 1.050484e-04 0
#>  [129,] 1.572843e-04 0
#>  [130,] 3.036597e-04 0
#>  [131,] 2.105529e-04 0
#>  [132,] 1.883477e-04 0
#>  [133,] 4.588171e-04 0
#>  [134,] 3.823384e-04 0
#>  [135,] 2.198354e-04 0
#>  [136,] 2.472099e-04 0
#>  [137,] 1.741631e-04 0
#>  [138,] 1.475699e-04 0
#>  [139,] 8.628468e-05 0
#>  [140,] 1.424133e-04 0
#>  [141,] 4.233582e-04 0
#>  [142,] 3.381668e-04 0
#>  [143,] 1.609920e-04 0
#>  [144,] 4.939444e-04 0
#>  [145,] 3.266931e-04 0
#>  [146,] 2.524569e-04 0
#>  [147,] 1.574897e-04 0
#>  [148,] 4.994684e-04 0
#>  [149,] 2.055826e-04 0
#>  [150,] 1.349092e-04 0
#>  [151,] 2.195261e-04 0
#>  [152,] 1.555794e-04 0
#>  [153,] 9.878520e-05 0
#>  [154,] 2.050330e-04 0
#>  [155,] 2.564453e-04 0
#>  [156,] 8.439242e-05 0
#>  [157,] 1.917585e-04 0
#>  [158,] 2.640896e-04 0
#>  [159,] 2.136800e-04 0
#>  [160,] 3.513842e-04 0
#>  [161,] 3.219189e-04 0
#>  [162,] 3.849776e-04 0
#>  [163,] 2.021947e-04 0
#>  [164,] 1.712216e-04 0
#>  [165,] 3.045861e-04 0
#>  [166,] 2.870154e-04 0
#>  [167,] 2.315010e-04 0
#>  [168,] 2.648433e-04 0
#>  [169,] 2.732016e-04 0
#>  [170,] 3.927443e-04 0
#>  [171,] 1.075876e-04 0
#>  [172,] 4.404180e-04 0
#>  [173,] 9.947555e-05 0
#>  [174,] 3.821260e-04 0
#>  [175,] 1.665737e-04 0
#>  [176,] 3.194957e-04 0
#>  [177,] 2.076997e-04 0
#>  [178,] 1.729868e-04 0
#>  [179,] 3.169120e-04 0
#>  [180,] 1.529712e-04 0
#>  [181,] 2.805341e-04 0
#>  [182,] 2.202215e-04 0
#>  [183,] 1.706976e-04 0
#>  [184,] 2.650638e-04 0
#>  [185,] 9.627756e-05 0
#>  [186,] 2.272906e-04 0
#>  [187,] 4.014976e-04 0
#>  [188,] 3.488166e-04 0
#>  [189,] 1.155115e-04 0
#>  [190,] 1.727911e-04 0
#>  [191,] 2.218601e-04 0
#>  [192,] 2.271951e-04 0
#>  [193,] 3.122239e-04 0
#>  [194,] 3.087891e-04 0
#>  [195,] 3.552130e-04 0
#>  [196,] 4.817158e-04 0
#>  [197,] 1.035454e-04 0
#>  [198,] 1.580160e-04 0
#>  [199,] 4.432547e-04 0
#>  [200,] 3.737307e-04 0
#>  [201,] 1.298144e-04 0
#>  [202,] 1.711541e-04 0
#>  [203,] 3.276502e-04 0
#>  [204,] 2.577801e-04 0
#>  [205,] 2.544682e-04 0
#>  [206,] 3.452492e-04 0
#>  [207,] 2.650497e-04 0
#>  [208,] 9.532667e-05 0
#>  [209,] 4.191289e-04 0
#>  [210,] 3.738508e-04 0
#>  [211,] 4.237605e-04 0
#>  [212,] 2.527714e-04 0
#>  [213,] 2.521701e-04 0
#>  [214,] 3.467276e-04 0
#>  [215,] 2.450373e-04 0
#>  [216,] 3.507334e-04 0
#>  [217,] 1.946259e-04 0
#>  [218,] 4.631230e-05 0
#>  [219,] 2.614646e-04 0
#>  [220,] 2.259931e-04 0
#>  [221,] 2.353341e-04 0
#>  [222,] 2.302690e-04 0
#>  [223,] 2.106351e-04 0
#>  [224,] 1.203315e-04 0
#>  [225,] 1.418560e-04 0
#>  [226,] 2.180019e-04 0
#>  [227,] 1.116371e-04 0
#>  [228,] 3.981277e-04 0
#>  [229,] 1.930174e-04 0
#>  [230,] 1.968617e-04 0
#>  [231,] 3.128749e-04 0
#>  [232,] 1.684034e-04 0
#>  [233,] 1.823298e-04 0
#>  [234,] 1.419673e-04 0
#>  [235,] 1.703284e-04 0
#>  [236,] 2.040147e-04 0
#>  [237,] 2.751882e-04 0
#>  [238,] 3.478655e-04 0
#>  [239,] 2.722647e-04 0
#>  [240,] 3.850143e-04 0
#>  [241,] 3.686090e-04 0
#>  [242,] 2.575462e-04 0
#>  [243,] 1.751565e-04 0
#>  [244,] 1.707291e-04 0
#>  [245,] 1.956844e-04 0
#>  [246,] 6.321695e-05 0
#>  [247,] 1.363894e-04 0
#>  [248,] 2.930106e-04 0
#>  [249,] 2.080039e-04 0
#>  [250,] 3.169050e-04 0
#>  [251,] 1.320001e-04 0
#>  [252,] 1.466643e-04 0
#>  [253,] 1.573195e-04 0
#>  [254,] 3.257383e-04 0
#>  [255,] 3.080162e-04 0
#>  [256,] 3.024941e-04 0
#>  [257,] 3.317314e-04 0
#>  [258,] 2.023111e-04 0
#>  [259,] 2.343042e-04 0
#>  [260,] 2.497625e-04 0
#>  [261,] 1.720036e-04 0
#>  [262,] 4.297047e-04 0
#>  [263,] 2.731230e-04 0
#>  [264,] 2.343498e-04 0
#>  [265,] 1.343466e-04 0
#>  [266,] 2.377882e-04 0
#>  [267,] 2.715978e-04 0
#>  [268,] 1.682879e-04 0
#>  [269,] 3.129518e-04 0
#>  [270,] 3.942916e-04 0
#>  [271,] 4.708724e-05 0
#>  [272,] 1.723929e-04 0
#>  [273,] 2.660829e-04 0
#>  [274,] 1.393167e-04 0
#>  [275,] 1.851451e-04 0
#>  [276,] 3.338497e-04 0
#>  [277,] 3.686231e-04 0
#>  [278,] 3.309930e-05 0
#>  [279,] 2.058884e-04 0
#>  [280,] 3.773023e-04 0
#>  [281,] 2.952449e-04 0
#>  [282,] 2.056088e-04 0
#>  [283,] 2.561970e-04 0
#>  [284,] 2.315445e-04 0
#>  [285,] 2.059098e-04 0
#>  [286,] 3.328749e-04 0
#>  [287,] 2.587193e-04 0
#>  [288,] 3.542683e-04 0
#>  [289,] 3.244392e-04 0
#>  [290,] 1.948937e-04 0
#>  [291,] 2.732231e-04 0
#>  [292,] 5.849242e-04 0
#>  [293,] 1.465561e-04 0
#>  [294,] 1.870717e-04 0
#>  [295,] 3.651161e-04 0
#>  [296,] 2.212020e-04 0
#>  [297,] 2.033001e-04 0
#>  [298,] 1.382482e-04 0
#>  [299,] 1.637380e-04 0
#>  [300,] 3.599339e-04 0
#>  [301,] 2.994504e-04 0
#>  [302,] 2.009281e-04 0
#>  [303,] 7.164345e-05 0
#>  [304,] 2.786644e-04 0
#>  [305,] 3.434537e-04 0
#>  [306,] 2.980653e-04 0
#>  [307,] 3.159285e-04 0
#>  [308,] 2.762376e-04 0
#>  [309,] 1.126062e-04 0
#>  [310,] 1.441793e-04 0
#>  [311,] 1.785247e-04 0
#>  [312,] 7.417659e-05 0
#>  [313,] 2.250616e-04 0
#>  [314,] 2.799227e-04 0
#>  [315,] 2.934852e-04 0
#>  [316,] 3.249448e-04 0
#>  [317,] 4.811018e-04 0
#>  [318,] 2.616606e-04 0
#>  [319,] 2.478154e-04 0
#>  [320,] 1.880969e-04 0
#>  [321,] 1.583139e-04 0
#>  [322,] 4.022674e-04 0
#>  [323,] 3.217032e-04 0
#>  [324,] 2.160040e-04 0
#>  [325,] 2.006849e-04 0
#>  [326,] 1.615067e-04 0
#>  [327,] 1.814334e-04 0
#>  [328,] 2.666140e-04 0
#>  [329,] 2.394801e-04 0
#>  [330,] 1.727550e-04 0
#>  [331,] 2.572991e-04 0
#>  [332,] 1.545657e-04 0
#>  [333,] 4.808882e-04 0
#>  [334,] 2.415266e-04 0
#>  [335,] 3.091395e-04 0
#>  [336,] 9.837649e-05 0
#>  [337,] 1.975199e-04 0
#>  [338,] 1.425942e-04 0
#>  [339,] 2.957010e-04 0
#>  [340,] 2.272218e-04 0
#>  [341,] 3.809231e-04 0
#>  [342,] 2.747640e-04 0
#>  [343,] 2.403698e-04 0
#>  [344,] 1.318787e-04 0
#>  [345,] 1.312128e-04 0
#>  [346,] 3.197906e-04 0
#>  [347,] 3.511751e-04 0
#>  [348,] 2.212144e-04 0
#>  [349,] 2.117912e-04 0
#>  [350,] 2.427150e-04 0
#>  [351,] 4.194031e-04 0
#>  [352,] 2.017630e-04 0
#>  [353,] 3.337610e-04 0
#>  [354,] 3.366892e-04 0
#>  [355,] 1.869612e-04 0
#>  [356,] 1.783136e-04 0
#>  [357,] 2.761644e-04 0
#>  [358,] 4.404260e-04 0
#>  [359,] 3.888548e-04 0
#>  [360,] 3.346423e-04 0
#>  [361,] 3.095410e-04 0
#>  [362,] 3.705765e-04 0
#>  [363,] 2.982045e-04 0
#>  [364,] 2.365162e-04 0
#>  [365,] 1.468685e-04 0
#>  [366,] 1.060493e-04 0
#>  [367,] 3.314899e-04 0
#>  [368,] 2.142466e-04 0
#>  [369,] 2.360436e-04 0
#>  [370,] 2.467690e-04 0
#>  [371,] 3.199588e-04 0
#>  [372,] 2.724874e-04 0
#>  [373,] 2.098690e-04 0
#>  [374,] 4.581940e-04 0
#>  [375,] 3.303119e-04 0
#>  [376,] 1.719382e-04 0
#>  [377,] 3.018979e-04 0
#>  [378,] 2.338475e-04 0
#>  [379,] 3.392380e-04 0
#>  [380,] 5.141703e-04 0
#>  [381,] 1.597795e-04 0
#>  [382,] 1.703533e-04 0
#>  [383,] 3.063330e-04 0
#>  [384,] 2.112797e-04 0
#>  [385,] 2.104327e-04 0
#>  [386,] 4.561084e-04 0
#>  [387,] 3.546706e-04 0
#>  [388,] 3.790253e-04 0
#>  [389,] 1.851800e-04 0
#>  [390,] 2.509202e-04 0
#>  [391,] 9.791194e-05 0
#>  [392,] 1.591114e-04 0
#>  [393,] 1.587649e-04 0
#>  [394,] 3.304360e-04 0
#>  [395,] 2.151030e-04 0
#>  [396,] 3.169665e-04 0
#>  [397,] 2.097342e-04 0
#>  [398,] 2.082469e-04 0
#>  [399,] 2.514993e-04 0
#>  [400,] 1.408431e-04 0
#>  [401,] 3.708359e-04 0
#>  [402,] 2.876342e-04 0
#>  [403,] 2.910949e-04 0
#>  [404,] 6.237237e-05 0
#>  [405,] 4.700322e-04 0
#>  [406,] 1.675128e-04 0
#>  [407,] 2.893958e-04 0
#>  [408,] 2.000427e-04 0
#>  [409,] 1.777377e-04 0
#>  [410,] 1.421449e-04 0
#>  [411,] 1.987587e-04 0
#>  [412,] 4.208507e-04 0
#>  [413,] 1.095658e-04 0
#>  [414,] 2.104461e-04 0
#>  [415,] 1.105240e-04 0
#>  [416,] 4.030025e-04 0
#>  [417,] 1.739236e-04 0
#>  [418,] 1.475393e-04 0
#>  [419,] 2.220458e-04 0
#>  [420,] 2.893314e-04 0
#>  [421,] 1.133567e-04 0
#>  [422,] 2.663714e-04 0
#>  [423,] 2.177217e-04 0
#>  [424,] 2.013209e-04 0
#>  [425,] 3.802255e-04 0
#>  [426,] 2.089242e-04 0
#>  [427,] 1.594121e-04 0
#>  [428,] 2.074647e-04 0
#>  [429,] 1.056375e-04 0
#>  [430,] 3.992094e-04 0
#>  [431,] 2.957823e-04 0
#>  [432,] 1.980855e-04 0
#>  [433,] 3.552283e-04 0
#>  [434,] 2.407333e-04 0
#>  [435,] 2.424460e-04 0
#>  [436,] 3.157091e-04 0
#>  [437,] 2.653137e-04 0
#>  [438,] 2.873695e-04 0
#>  [439,] 3.297792e-04 0
#>  [440,] 1.795462e-04 0
#>  [441,] 2.284686e-04 0
#>  [442,] 2.721920e-04 0
#>  [443,] 2.982245e-04 0
#>  [444,] 2.628720e-04 0
#>  [445,] 2.660297e-04 0
#>  [446,] 1.982129e-04 0
#>  [447,] 2.945618e-04 0
#>  [448,] 3.713204e-04 0
#>  [449,] 3.222343e-04 0
#>  [450,] 4.282617e-04 0
#>  [451,] 2.885739e-04 0
#>  [452,] 3.059782e-04 0
#>  [453,] 3.139352e-04 0
#>  [454,] 1.013619e-04 0
#>  [455,] 1.398647e-04 0
#>  [456,] 4.074999e-04 0
#>  [457,] 3.180464e-04 0
#>  [458,] 1.799393e-04 0
#>  [459,] 2.573063e-04 0
#>  [460,] 2.574127e-04 0
#>  [461,] 3.837571e-04 0
#>  [462,] 2.483195e-04 0
#>  [463,] 8.844945e-05 0
#>  [464,] 1.009246e-04 0
#>  [465,] 3.486304e-04 0
#>  [466,] 2.195502e-04 0
#>  [467,] 1.673871e-04 0
#>  [468,] 3.072224e-04 0
#>  [469,] 2.509982e-04 0
#>  [470,] 3.241261e-04 0
#>  [471,] 3.760304e-04 0
#>  [472,] 4.265878e-04 0
#>  [473,] 3.503995e-04 0
#>  [474,] 3.487650e-04 0
#>  [475,] 2.108171e-04 0
#>  [476,] 1.864104e-04 0
#>  [477,] 2.565999e-04 0
#>  [478,] 4.998003e-04 0
#>  [479,] 3.242010e-04 0
#>  [480,] 3.391160e-04 0
#>  [481,] 6.542318e-04 0
#>  [482,] 1.043097e-04 0
#>  [483,] 1.886530e-04 0
#>  [484,] 1.699839e-04 0
#>  [485,] 9.744109e-05 0
#>  [486,] 1.597365e-04 0
#>  [487,] 2.268302e-04 0
#>  [488,] 1.745874e-04 0
#>  [489,] 1.721114e-04 0
#>  [490,] 6.828457e-04 0
#>  [491,] 4.083766e-04 0
#>  [492,] 3.725653e-04 0
#>  [493,] 4.448790e-04 0
#>  [494,] 9.974543e-05 0
#>  [495,] 3.921577e-04 0
#>  [496,] 2.332768e-04 0
#>  [497,] 2.503837e-04 0
#>  [498,] 1.296128e-04 0
#>  [499,] 2.816910e-04 0
#>  [500,] 2.688046e-04 0
#>  [501,] 4.084550e-04 0
#>  [502,] 1.983299e-04 0
#>  [503,] 3.195990e-04 0
#>  [504,] 1.766680e-04 0
#>  [505,] 1.488132e-04 0
#>  [506,] 3.017238e-04 0
#>  [507,] 4.497474e-04 0
#>  [508,] 1.811854e-04 0
#>  [509,] 2.822359e-04 0
#>  [510,] 3.233739e-04 0
#>  [511,] 2.266573e-04 0
#>  [512,] 3.490566e-04 0
#>  [513,] 2.538166e-04 0
#>  [514,] 2.524564e-04 0
#>  [515,] 4.379753e-04 0
#>  [516,] 2.395782e-04 0
#>  [517,] 1.451555e-04 0
#>  [518,] 2.918630e-04 0
#>  [519,] 4.319157e-04 0
#>  [520,] 1.449371e-04 0
#>  [521,] 2.408186e-04 0
#>  [522,] 2.159483e-04 0
#>  [523,] 1.493342e-04 0
#>  [524,] 2.522421e-04 0
#>  [525,] 1.280854e-04 0
#>  [526,] 2.202640e-04 0
#>  [527,] 1.401000e-04 0
#>  [528,] 2.252545e-04 0
#>  [529,] 4.192547e-04 0
#>  [530,] 5.856150e-05 0
#>  [531,] 2.303700e-04 0
#>  [532,] 1.893912e-04 0
#>  [533,] 2.950516e-04 0
#>  [534,] 2.922270e-04 0
#>  [535,] 2.112474e-04 0
#>  [536,] 2.048496e-04 0
#>  [537,] 2.996888e-04 0
#>  [538,] 4.096615e-04 0
#>  [539,] 2.214818e-04 0
#>  [540,] 7.943973e-05 0
#>  [541,] 2.351309e-04 0
#>  [542,] 1.932919e-04 0
#>  [543,] 4.004713e-04 0
#>  [544,] 4.679694e-04 0
#>  [545,] 1.740668e-04 0
#>  [546,] 3.057172e-04 0
#>  [547,] 2.849620e-04 0
#>  [548,] 3.152946e-04 0
#>  [549,] 4.264678e-04 0
#>  [550,] 1.693906e-04 0
#>  [551,] 1.516689e-04 0
#>  [552,] 2.451270e-04 0
#>  [553,] 3.815506e-04 0
#>  [554,] 9.082806e-05 0
#>  [555,] 3.713872e-04 0
#>  [556,] 2.938459e-04 0
#>  [557,] 2.234872e-04 0
#>  [558,] 3.254973e-04 0
#>  [559,] 2.948301e-04 0
#>  [560,] 1.964489e-04 0
#>  [561,] 2.279314e-04 0
#>  [562,] 2.139851e-04 0
#>  [563,] 4.205340e-04 0
#>  [564,] 1.684487e-04 0
#>  [565,] 8.652966e-05 0
#>  [566,] 2.182924e-04 0
#>  [567,] 3.284979e-04 0
#>  [568,] 2.096685e-04 0
#>  [569,] 2.649464e-04 0
#>  [570,] 1.787032e-04 0
#>  [571,] 2.014820e-04 0
#>  [572,] 1.812511e-04 0
#>  [573,] 3.124171e-04 0
#>  [574,] 2.313510e-04 0
#>  [575,] 4.504173e-04 0
#>  [576,] 4.010612e-04 0
#>  [577,] 3.200226e-04 0
#>  [578,] 2.361785e-04 0
#>  [579,] 2.522588e-04 0
#>  [580,] 1.895863e-04 0
#>  [581,] 4.105023e-04 0
#>  [582,] 3.295778e-04 0
#>  [583,] 4.747489e-04 0
#>  [584,] 1.860833e-04 0
#>  [585,] 2.008891e-04 0
#>  [586,] 3.391290e-04 0
#>  [587,] 2.367515e-04 0
#>  [588,] 2.384270e-04 0
#>  [589,] 9.573496e-05 0
#>  [590,] 1.394594e-04 0
#>  [591,] 2.405136e-04 0
#>  [592,] 2.639716e-04 0
#>  [593,] 2.545882e-04 0
#>  [594,] 3.801204e-04 0
#>  [595,] 3.092436e-04 0
#>  [596,] 3.139222e-04 0
#>  [597,] 1.216780e-04 0
#>  [598,] 2.801116e-04 0
#>  [599,] 1.471358e-04 0
#>  [600,] 2.763946e-04 0
#>  [601,] 4.226094e-04 0
#>  [602,] 3.462439e-04 0
#>  [603,] 1.465718e-04 0
#>  [604,] 1.547441e-04 0
#>  [605,] 1.419883e-04 0
#>  [606,] 8.878479e-05 0
#>  [607,] 1.208120e-04 0
#>  [608,] 3.455454e-04 0
#>  [609,] 2.711902e-04 0
#>  [610,] 3.651901e-04 0
#>  [611,] 5.341934e-04 0
#>  [612,] 4.194523e-04 0
#>  [613,] 1.921831e-04 0
#>  [614,] 2.283533e-04 0
#>  [615,] 2.354304e-04 0
#>  [616,] 2.660503e-04 0
#>  [617,] 2.473591e-04 0
#>  [618,] 1.785404e-04 0
#>  [619,] 2.116709e-04 0
#>  [620,] 2.088175e-04 0
#>  [621,] 2.492634e-04 0
#>  [622,] 2.931449e-04 0
#>  [623,] 4.939881e-04 0
#>  [624,] 3.211250e-04 0
#>  [625,] 1.343169e-04 0
#>  [626,] 2.262327e-04 0
#>  [627,] 1.886007e-04 0
#>  [628,] 1.270536e-04 0
#>  [629,] 2.835931e-04 0
#>  [630,] 1.673164e-04 0
#>  [631,] 3.483030e-04 0
#>  [632,] 2.561686e-04 0
#>  [633,] 2.678034e-04 0
#>  [634,] 4.027118e-04 0
#>  [635,] 2.168023e-04 0
#>  [636,] 1.561287e-04 0
#>  [637,] 5.022265e-05 0
#>  [638,] 2.188013e-04 0
#>  [639,] 2.493922e-04 0
#>  [640,] 2.036902e-04 0
#>  [641,] 1.625068e-04 0
#>  [642,] 2.533160e-04 0
#>  [643,] 4.844577e-04 0
#>  [644,] 1.084860e-04 0
#>  [645,] 3.485843e-04 0
#>  [646,] 2.637173e-04 0
#>  [647,] 2.155776e-04 0
#>  [648,] 2.408999e-04 0
#>  [649,] 3.644609e-04 0
#>  [650,] 1.095570e-04 0
#>  [651,] 3.207649e-04 0
#>  [652,] 3.182078e-04 0
#>  [653,] 2.235293e-04 0
#>  [654,] 1.450184e-04 0
#>  [655,] 1.749741e-04 0
#>  [656,] 2.935187e-04 0
#>  [657,] 1.103301e-04 0
#>  [658,] 1.877717e-04 0
#>  [659,] 3.202909e-04 0
#>  [660,] 2.819825e-04 0
#>  [661,] 1.684689e-04 0
#>  [662,] 3.581793e-04 0
#>  [663,] 4.056299e-04 0
#>  [664,] 2.285957e-04 0
#>  [665,] 3.057567e-04 0
#>  [666,] 2.526728e-04 0
#>  [667,] 3.799451e-04 0
#>  [668,] 3.432114e-04 0
#>  [669,] 2.057191e-04 0
#>  [670,] 2.542318e-04 0
#>  [671,] 5.487688e-04 0
#>  [672,] 1.459682e-04 0
#>  [673,] 2.192567e-04 0
#>  [674,] 2.841136e-04 0
#>  [675,] 2.772054e-04 0
#>  [676,] 2.507460e-04 0
#>  [677,] 5.551042e-05 0
#>  [678,] 1.756016e-04 0
#>  [679,] 2.160522e-04 0
#>  [680,] 3.379077e-04 0
#>  [681,] 2.059498e-04 0
#>  [682,] 1.934096e-04 0
#>  [683,] 3.707621e-04 0
#>  [684,] 1.606186e-04 0
#>  [685,] 1.541098e-04 0
#>  [686,] 4.069886e-04 0
#>  [687,] 3.313717e-04 0
#>  [688,] 3.822233e-04 0
#>  [689,] 2.313821e-04 0
#>  [690,] 2.059575e-04 0
#>  [691,] 1.949583e-04 0
#>  [692,] 2.480859e-04 0
#>  [693,] 1.515401e-04 0
#>  [694,] 3.304577e-04 0
#>  [695,] 2.325727e-04 0
#>  [696,] 2.035595e-04 0
#>  [697,] 2.950899e-04 0
#>  [698,] 3.682394e-04 0
#>  [699,] 3.535984e-04 0
#>  [700,] 2.454970e-04 0
#>  [701,] 1.963656e-04 0
#>  [702,] 2.244821e-04 0
#>  [703,] 2.620653e-04 0
#>  [704,] 2.970199e-04 0
#>  [705,] 2.597082e-04 0
#>  [706,] 4.604239e-04 0
#>  [707,] 3.180046e-04 0
#>  [708,] 2.867155e-04 0
#>  [709,] 1.561886e-04 0
#>  [710,] 3.509606e-04 0
#>  [711,] 2.110855e-04 0
#>  [712,] 3.836408e-04 0
#>  [713,] 3.849819e-05 0
#>  [714,] 2.698589e-04 0
#>  [715,] 1.317456e-04 0
#>  [716,] 7.755576e-05 0
#>  [717,] 2.209131e-04 0
#>  [718,] 1.587916e-04 0
#>  [719,] 1.288492e-04 0
#>  [720,] 3.760651e-04 0
#>  [721,] 2.173689e-04 0
#>  [722,] 2.521303e-04 0
#>  [723,] 1.045320e-04 0
#>  [724,] 3.309668e-04 0
#>  [725,] 1.572216e-04 0
#>  [726,] 2.228909e-04 0
#>  [727,] 3.337844e-04 0
#>  [728,] 1.053994e-04 0
#>  [729,] 1.871177e-04 0
#>  [730,] 2.518188e-04 0
#>  [731,] 4.384977e-04 0
#>  [732,] 5.243590e-04 0
#>  [733,] 2.018604e-04 0
#>  [734,] 2.395444e-04 0
#>  [735,] 3.241952e-04 0
#>  [736,] 1.130585e-04 0
#>  [737,] 2.450688e-04 0
#>  [738,] 2.493143e-05 0
#>  [739,] 2.882067e-04 0
#>  [740,] 4.044332e-04 0
#>  [741,] 1.149805e-04 0
#>  [742,] 3.730648e-04 0
#>  [743,] 1.283070e-04 0
#>  [744,] 3.997110e-04 0
#>  [745,] 1.822030e-04 0
#>  [746,] 2.716948e-04 0
#>  [747,] 1.137194e-04 0
#>  [748,] 3.509345e-04 0
#>  [749,] 2.534691e-04 0
#>  [750,] 1.623516e-04 0
#>  [751,] 3.234420e-04 0
#>  [752,] 1.390159e-04 0
#>  [753,] 3.052435e-04 0
#>  [754,] 2.163745e-04 0
#>  [755,] 1.824000e-04 0
#>  [756,] 2.204347e-04 0
#>  [757,] 2.936416e-04 0
#>  [758,] 2.374341e-04 0
#>  [759,] 1.472234e-04 0
#>  [760,] 4.303334e-04 0
#>  [761,] 3.104332e-04 0
#>  [762,] 3.033111e-04 0
#>  [763,] 2.722330e-04 0
#>  [764,] 3.945617e-04 0
#>  [765,] 2.630174e-04 0
#>  [766,] 1.966927e-04 0
#>  [767,] 3.844374e-04 0
#>  [768,] 3.157664e-04 0
#>  [769,] 4.335259e-05 0
#>  [770,] 3.141318e-04 0
#>  [771,] 1.654519e-04 0
#>  [772,] 3.228501e-04 0
#>  [773,] 3.028235e-04 0
#>  [774,] 2.356557e-04 0
#>  [775,] 2.774814e-04 0
#>  [776,] 2.157424e-04 0
#>  [777,] 1.091757e-04 0
#>  [778,] 8.044973e-05 0
#>  [779,] 8.345155e-05 0
#>  [780,] 1.081871e-04 0
#>  [781,] 2.364508e-04 0
#>  [782,] 1.332829e-04 0
#>  [783,] 2.488744e-04 0
#>  [784,] 1.152727e-04 0
#>  [785,] 2.535754e-04 0
#>  [786,] 3.100772e-04 0
#>  [787,] 4.785662e-04 0
#>  [788,] 3.031556e-04 0
#>  [789,] 2.736506e-04 0
#>  [790,] 1.996877e-04 0
#>  [791,] 1.275504e-04 0
#>  [792,] 1.853950e-04 0
#>  [793,] 1.734803e-04 0
#>  [794,] 2.672030e-04 0
#>  [795,] 7.667651e-05 0
#>  [796,] 2.112453e-04 0
#>  [797,] 3.736929e-04 0
#>  [798,] 5.560811e-04 0
#>  [799,] 1.790343e-04 0
#>  [800,] 1.746465e-04 0
#>  [801,] 2.447328e-04 0
#>  [802,] 1.693475e-04 0
#>  [803,] 1.674992e-04 0
#>  [804,] 6.930171e-05 0
#>  [805,] 8.983587e-05 0
#>  [806,] 2.634435e-04 0
#>  [807,] 2.582486e-04 0
#>  [808,] 2.556380e-04 0
#>  [809,] 1.995702e-04 0
#>  [810,] 2.323220e-04 0
#>  [811,] 2.857051e-04 0
#>  [812,] 1.570781e-04 0
#>  [813,] 2.510821e-04 0
#>  [814,] 1.558716e-04 0
#>  [815,] 2.963195e-04 0
#>  [816,] 4.929957e-05 0
#>  [817,] 2.629739e-04 0
#>  [818,] 3.690959e-04 0
#>  [819,] 3.209644e-04 0
#>  [820,] 5.537454e-04 0
#>  [821,] 1.403553e-04 0
#>  [822,] 1.646922e-04 0
#>  [823,] 4.237362e-04 0
#>  [824,] 2.988110e-04 0
#>  [825,] 3.215684e-04 0
#>  [826,] 2.762804e-04 0
#>  [827,] 1.348681e-04 0
#>  [828,] 3.215862e-04 0
#>  [829,] 1.280123e-04 0
#>  [830,] 1.836707e-04 0
#>  [831,] 3.014668e-04 0
#>  [832,] 2.678450e-04 0
#>  [833,] 3.514266e-04 0
#>  [834,] 1.878796e-04 0
#>  [835,] 2.105712e-04 0
#>  [836,] 3.305988e-04 0
#>  [837,] 6.751337e-05 0
#>  [838,] 3.685690e-04 0
#>  [839,] 1.003287e-04 0
#>  [840,] 1.851440e-04 0
#>  [841,] 1.603199e-04 0
#>  [842,] 1.468121e-04 0
#>  [843,] 3.060096e-04 0
#>  [844,] 3.520104e-04 0
#>  [845,] 5.563269e-04 0
#>  [846,] 1.859809e-04 0
#>  [847,] 1.993243e-04 0
#>  [848,] 4.688514e-04 0
#>  [849,] 2.369772e-04 0
#>  [850,] 3.941052e-04 0
#>  [851,] 1.504409e-04 0
#>  [852,] 2.960572e-04 0
#>  [853,] 2.108035e-04 0
#>  [854,] 2.246083e-04 0
#>  [855,] 2.852168e-04 0
#>  [856,] 1.423209e-04 0
#>  [857,] 3.518317e-04 0
#>  [858,] 2.797742e-04 0
#>  [859,] 2.222195e-04 0
#>  [860,] 2.281903e-04 0
#>  [861,] 1.316371e-04 0
#>  [862,] 3.027514e-04 0
#>  [863,] 2.942336e-04 0
#>  [864,] 3.196133e-04 0
#>  [865,] 2.178491e-04 0
#>  [866,] 3.078019e-04 0
#>  [867,] 1.659707e-04 0
#>  [868,] 1.574956e-04 0
#>  [869,] 2.561883e-04 0
#>  [870,] 3.813491e-04 0
#>  [871,] 1.841328e-04 0
#>  [872,] 1.878828e-04 0
#>  [873,] 2.876409e-04 0
#>  [874,] 2.834307e-04 0
#>  [875,] 2.445162e-04 0
#>  [876,] 1.625989e-04 0
#>  [877,] 3.593802e-04 0
#>  [878,] 1.990678e-04 0
#>  [879,] 1.946178e-04 0
#>  [880,] 1.917611e-04 0
#>  [881,] 1.932140e-04 0
#>  [882,] 2.130751e-04 0
#>  [883,] 2.530181e-04 0
#>  [884,] 1.422756e-04 0
#>  [885,] 2.391618e-04 0
#>  [886,] 2.545553e-04 0
#>  [887,] 2.307330e-04 0
#>  [888,] 7.217122e-05 0
#>  [889,] 4.158472e-04 0
#>  [890,] 1.999728e-04 0
#>  [891,] 2.276761e-04 0
#>  [892,] 3.742574e-04 0
#>  [893,] 2.460132e-04 0
#>  [894,] 2.837380e-04 0
#>  [895,] 2.418482e-04 0
#>  [896,] 4.452901e-04 0
#>  [897,] 2.472185e-04 0
#>  [898,] 1.484630e-04 0
#>  [899,] 2.565810e-04 0
#>  [900,] 3.116468e-04 0
#>  [901,] 2.057377e-04 0
#>  [902,] 2.248702e-04 0
#>  [903,] 2.476694e-04 0
#>  [904,] 2.393110e-04 0
#>  [905,] 1.758681e-04 0
#>  [906,] 3.539754e-04 0
#>  [907,] 2.837831e-04 0
#>  [908,] 2.018909e-04 0
#>  [909,] 2.859341e-04 0
#>  [910,] 1.315055e-04 0
#>  [911,] 3.526117e-04 0
#>  [912,] 1.404419e-04 0
#>  [913,] 1.636013e-04 0
#>  [914,] 3.183048e-04 0
#>  [915,] 1.109403e-04 0
#>  [916,] 2.805868e-04 0
#>  [917,] 4.248834e-05 0
#>  [918,] 2.641218e-04 0
#>  [919,] 1.591183e-04 0
#>  [920,] 5.045417e-04 0
#>  [921,] 1.781811e-04 0
#>  [922,] 4.753054e-04 0
#>  [923,] 2.873764e-04 0
#>  [924,] 2.030911e-04 0
#>  [925,] 1.672600e-04 0
#>  [926,] 2.856257e-04 0
#>  [927,] 4.057556e-04 0
#>  [928,] 2.847504e-04 0
#>  [929,] 1.221909e-04 0
#>  [930,] 2.410461e-04 0
#>  [931,] 1.670921e-04 0
#>  [932,] 2.497373e-04 0
#>  [933,] 9.214140e-05 0
#>  [934,] 5.533825e-04 0
#>  [935,] 2.583420e-04 0
#>  [936,] 1.731495e-04 0
#>  [937,] 1.590001e-04 0
#>  [938,] 2.612118e-04 0
#>  [939,] 1.852760e-04 0
#>  [940,] 3.501000e-04 0
#>  [941,] 2.984257e-04 0
#>  [942,] 2.376755e-04 0
#>  [943,] 3.153702e-04 0
#>  [944,] 3.773165e-04 0
#>  [945,] 3.644880e-04 0
#>  [946,] 2.543904e-04 0
#>  [947,] 2.732824e-04 0
#>  [948,] 2.906559e-04 0
#>  [949,] 1.327584e-04 0
#>  [950,] 3.356992e-04 0
#>  [951,] 3.028427e-04 0
#>  [952,] 1.893701e-04 0
#>  [953,] 1.358843e-04 0
#>  [954,] 7.866640e-05 0
#>  [955,] 3.341807e-04 0
#>  [956,] 2.154368e-04 0
#>  [957,] 3.409731e-04 0
#>  [958,] 4.846245e-04 0
#>  [959,] 2.034264e-04 0
#>  [960,] 2.416117e-04 0
#>  [961,] 3.012140e-04 0
#>  [962,] 4.464723e-04 0
#>  [963,] 3.008839e-04 0
#>  [964,] 2.210974e-04 0
#>  [965,] 2.549875e-04 0
#>  [966,] 2.730135e-04 0
#>  [967,] 4.464490e-04 0
#>  [968,] 3.302712e-04 0
#>  [969,] 2.318027e-04 0
#>  [970,] 3.287092e-04 0
#>  [971,] 1.561973e-04 0
#>  [972,] 2.966892e-04 0
#>  [973,] 2.479396e-04 0
#>  [974,] 3.828799e-04 0
#>  [975,] 2.450978e-04 0
#>  [976,] 1.585412e-04 0
#>  [977,] 3.925257e-04 0
#>  [978,] 1.406725e-04 0
#>  [979,] 2.428278e-04 0
#>  [980,] 1.963504e-04 0
#>  [981,] 2.996787e-04 0
#>  [982,] 2.225087e-04 0
#>  [983,] 3.079070e-04 0
#>  [984,] 2.144225e-04 0
#>  [985,] 3.831465e-04 0
#>  [986,] 2.136507e-04 0
#>  [987,] 9.502069e-05 0
#>  [988,] 2.147885e-04 0
#>  [989,] 2.199898e-04 0
#>  [990,] 1.990254e-04 0
#>  [991,] 2.568355e-04 0
#>  [992,] 2.764570e-04 0
#>  [993,] 1.339279e-04 0
#>  [994,] 2.515579e-04 0
#>  [995,] 3.253564e-04 0
#>  [996,] 3.340186e-04 0
#>  [997,] 3.056571e-04 0
#>  [998,] 3.111801e-04 0
#>  [999,] 2.623249e-04 0
#> [1000,] 2.901752e-04 0
#> 
#> $select
#>    [1]    1    2    3    4    5    6    7    8    9   10   11   12   13   14
#>   [15]   15   16   17   18   19   20   21   22   23   24   25   26   27   28
#>   [29]   29   30   31   32   33   34   35   36   37   38   39   40   41   42
#>   [43]   43   44   45   46   47   48   49   50   51   52   53   54   55   56
#>   [57]   57   58   59   60   61   62   63   64   65   66   67   68   69   70
#>   [71]   71   72   73   74   75   76   77   78   79   80   81   82   83   84
#>   [85]   85   86   87   88   89   90   91   92   93   94   95   96   97   98
#>   [99]   99  100  101  102  103  104  105  106  107  108  109  110  111  112
#>  [113]  113  114  115  116  117  118  119  120  121  122  123  124  125  126
#>  [127]  127  128  129  130  131  132  133  134  135  136  137  138  139  140
#>  [141]  141  142  143  144  145  146  147  148  149  150  151  152  153  154
#>  [155]  155  156  157  158  159  160  161  162  163  164  165  166  167  168
#>  [169]  169  170  171  172  173  174  175  176  177  178  179  180  181  182
#>  [183]  183  184  185  186  187  188  189  190  191  192  193  194  195  196
#>  [197]  197  198  199  200  201  202  203  204  205  206  207  208  209  210
#>  [211]  211  212  213  214  215  216  217  218  219  220  221  222  223  224
#>  [225]  225  226  227  228  229  230  231  232  233  234  235  236  237  238
#>  [239]  239  240  241  242  243  244  245  246  247  248  249  250  251  252
#>  [253]  253  254  255  256  257  258  259  260  261  262  263  264  265  266
#>  [267]  267  268  269  270  271  272  273  274  275  276  277  278  279  280
#>  [281]  281  282  283  284  285  286  287  288  289  290  291  292  293  294
#>  [295]  295  296  297  298  299  300  301  302  303  304  305  306  307  308
#>  [309]  309  310  311  312  313  314  315  316  317  318  319  320  321  322
#>  [323]  323  324  325  326  327  328  329  330  331  332  333  334  335  336
#>  [337]  337  338  339  340  341  342  343  344  345  346  347  348  349  350
#>  [351]  351  352  353  354  355  356  357  358  359  360  361  362  363  364
#>  [365]  365  366  367  368  369  370  371  372  373  374  375  376  377  378
#>  [379]  379  380  381  382  383  384  385  386  387  388  389  390  391  392
#>  [393]  393  394  395  396  397  398  399  400  401  402  403  404  405  406
#>  [407]  407  408  409  410  411  412  413  414  415  416  417  418  419  420
#>  [421]  421  422  423  424  425  426  427  428  429  430  431  432  433  434
#>  [435]  435  436  437  438  439  440  441  442  443  444  445  446  447  448
#>  [449]  449  450  451  452  453  454  455  456  457  458  459  460  461  462
#>  [463]  463  464  465  466  467  468  469  470  471  472  473  474  475  476
#>  [477]  477  478  479  480  481  482  483  484  485  486  487  488  489  490
#>  [491]  491  492  493  494  495  496  497  498  499  500  501  502  503  504
#>  [505]  505  506  507  508  509  510  511  512  513  514  515  516  517  518
#>  [519]  519  520  521  522  523  524  525  526  527  528  529  530  531  532
#>  [533]  533  534  535  536  537  538  539  540  541  542  543  544  545  546
#>  [547]  547  548  549  550  551  552  553  554  555  556  557  558  559  560
#>  [561]  561  562  563  564  565  566  567  568  569  570  571  572  573  574
#>  [575]  575  576  577  578  579  580  581  582  583  584  585  586  587  588
#>  [589]  589  590  591  592  593  594  595  596  597  598  599  600  601  602
#>  [603]  603  604  605  606  607  608  609  610  611  612  613  614  615  616
#>  [617]  617  618  619  620  621  622  623  624  625  626  627  628  629  630
#>  [631]  631  632  633  634  635  636  637  638  639  640  641  642  643  644
#>  [645]  645  646  647  648  649  650  651  652  653  654  655  656  657  658
#>  [659]  659  660  661  662  663  664  665  666  667  668  669  670  671  672
#>  [673]  673  674  675  676  677  678  679  680  681  682  683  684  685  686
#>  [687]  687  688  689  690  691  692  693  694  695  696  697  698  699  700
#>  [701]  701  702  703  704  705  706  707  708  709  710  711  712  713  714
#>  [715]  715  716  717  718  719  720  721  722  723  724  725  726  727  728
#>  [729]  729  730  731  732  733  734  735  736  737  738  739  740  741  742
#>  [743]  743  744  745  746  747  748  749  750  751  752  753  754  755  756
#>  [757]  757  758  759  760  761  762  763  764  765  766  767  768  769  770
#>  [771]  771  772  773  774  775  776  777  778  779  780  781  782  783  784
#>  [785]  785  786  787  788  789  790  791  792  793  794  795  796  797  798
#>  [799]  799  800  801  802  803  804  805  806  807  808  809  810  811  812
#>  [813]  813  814  815  816  817  818  819  820  821  822  823  824  825  826
#>  [827]  827  828  829  830  831  832  833  834  835  836  837  838  839  840
#>  [841]  841  842  843  844  845  846  847  848  849  850  851  852  853  854
#>  [855]  855  856  857  858  859  860  861  862  863  864  865  866  867  868
#>  [869]  869  870  871  872  873  874  875  876  877  878  879  880  881  882
#>  [883]  883  884  885  886  887  888  889  890  891  892  893  894  895  896
#>  [897]  897  898  899  900  901  902  903  904  905  906  907  908  909  910
#>  [911]  911  912  913  914  915  916  917  918  919  920  921  922  923  924
#>  [925]  925  926  927  928  929  930  931  932  933  934  935  936  937  938
#>  [939]  939  940  941  942  943  944  945  946  947  948  949  950  951  952
#>  [953]  953  954  955  956  957  958  959  960  961  962  963  964  965  966
#>  [967]  967  968  969  970  971  972  973  974  975  976  977  978  979  980
#>  [981]  981  982  983  984  985  986  987  988  989  990  991  992  993  994
#>  [995]  995  996  997  998  999 1000
#> 
#> $formula
#> [1] "te( beta.1.,beta.2., bs='cr')"
#> 
#> $pars
#>   [1] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>   [5] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>   [9] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [13] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [17] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [21] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [25] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [29] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [33] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [37] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [41] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [45] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [49] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [53] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [57] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [61] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [65] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [69] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [73] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [77] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [81] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [85] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [89] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [93] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#>  [97] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [101] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [105] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [109] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [113] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [117] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [121] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [125] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [129] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [133] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [137] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [141] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [145] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [149] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [153] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [157] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [161] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [165] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [169] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [173] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [177] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [181] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [185] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [189] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [193] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [197] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [201] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [205] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [209] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [213] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [217] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [221] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [225] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [229] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [233] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [237] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [241] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [245] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [249] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [253] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [257] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [261] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [265] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [269] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [273] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [277] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [281] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [285] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [289] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [293] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [297] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [301] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [305] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [309] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [313] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [317] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [321] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [325] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [329] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [333] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [337] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [341] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [345] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [349] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [353] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [357] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [361] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [365] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [369] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [373] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [377] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [381] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [385] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [389] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [393] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [397] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [401] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [405] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [409] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [413] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [417] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [421] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [425] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [429] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [433] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [437] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [441] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [445] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [449] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [453] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [457] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [461] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [465] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [469] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [473] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [477] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [481] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [485] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [489] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [493] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [497] "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2." "beta.1.,beta.2."
#> [501] "beta.1.,beta.2."
#> 
#> $res
#>                pars     k        evppi
#> 1   beta.1.,beta.2.     0 0.000000e+00
#> 2   beta.1.,beta.2.   100 0.000000e+00
#> 3   beta.1.,beta.2.   200 0.000000e+00
#> 4   beta.1.,beta.2.   300 0.000000e+00
#> 5   beta.1.,beta.2.   400 0.000000e+00
#> 6   beta.1.,beta.2.   500 0.000000e+00
#> 7   beta.1.,beta.2.   600 0.000000e+00
#> 8   beta.1.,beta.2.   700 0.000000e+00
#> 9   beta.1.,beta.2.   800 0.000000e+00
#> 10  beta.1.,beta.2.   900 0.000000e+00
#> 11  beta.1.,beta.2.  1000 0.000000e+00
#> 12  beta.1.,beta.2.  1100 0.000000e+00
#> 13  beta.1.,beta.2.  1200 0.000000e+00
#> 14  beta.1.,beta.2.  1300 0.000000e+00
#> 15  beta.1.,beta.2.  1400 0.000000e+00
#> 16  beta.1.,beta.2.  1500 0.000000e+00
#> 17  beta.1.,beta.2.  1600 0.000000e+00
#> 18  beta.1.,beta.2.  1700 0.000000e+00
#> 19  beta.1.,beta.2.  1800 0.000000e+00
#> 20  beta.1.,beta.2.  1900 0.000000e+00
#> 21  beta.1.,beta.2.  2000 0.000000e+00
#> 22  beta.1.,beta.2.  2100 0.000000e+00
#> 23  beta.1.,beta.2.  2200 0.000000e+00
#> 24  beta.1.,beta.2.  2300 0.000000e+00
#> 25  beta.1.,beta.2.  2400 0.000000e+00
#> 26  beta.1.,beta.2.  2500 0.000000e+00
#> 27  beta.1.,beta.2.  2600 0.000000e+00
#> 28  beta.1.,beta.2.  2700 0.000000e+00
#> 29  beta.1.,beta.2.  2800 0.000000e+00
#> 30  beta.1.,beta.2.  2900 0.000000e+00
#> 31  beta.1.,beta.2.  3000 0.000000e+00
#> 32  beta.1.,beta.2.  3100 0.000000e+00
#> 33  beta.1.,beta.2.  3200 0.000000e+00
#> 34  beta.1.,beta.2.  3300 0.000000e+00
#> 35  beta.1.,beta.2.  3400 2.457218e-05
#> 36  beta.1.,beta.2.  3500 9.285676e-05
#> 37  beta.1.,beta.2.  3600 1.611413e-04
#> 38  beta.1.,beta.2.  3700 2.294259e-04
#> 39  beta.1.,beta.2.  3800 2.977105e-04
#> 40  beta.1.,beta.2.  3900 3.659951e-04
#> 41  beta.1.,beta.2.  4000 4.342796e-04
#> 42  beta.1.,beta.2.  4100 5.025642e-04
#> 43  beta.1.,beta.2.  4200 5.708488e-04
#> 44  beta.1.,beta.2.  4300 6.391333e-04
#> 45  beta.1.,beta.2.  4400 7.074179e-04
#> 46  beta.1.,beta.2.  4500 8.359579e-04
#> 47  beta.1.,beta.2.  4600 9.696656e-04
#> 48  beta.1.,beta.2.  4700 1.103373e-03
#> 49  beta.1.,beta.2.  4800 1.237081e-03
#> 50  beta.1.,beta.2.  4900 1.370789e-03
#> 51  beta.1.,beta.2.  5000 1.504497e-03
#> 52  beta.1.,beta.2.  5100 1.670549e-03
#> 53  beta.1.,beta.2.  5200 1.859133e-03
#> 54  beta.1.,beta.2.  5300 2.047718e-03
#> 55  beta.1.,beta.2.  5400 2.236302e-03
#> 56  beta.1.,beta.2.  5500 2.424887e-03
#> 57  beta.1.,beta.2.  5600 2.613472e-03
#> 58  beta.1.,beta.2.  5700 2.802056e-03
#> 59  beta.1.,beta.2.  5800 2.990641e-03
#> 60  beta.1.,beta.2.  5900 3.179226e-03
#> 61  beta.1.,beta.2.  6000 3.388697e-03
#> 62  beta.1.,beta.2.  6100 3.632914e-03
#> 63  beta.1.,beta.2.  6200 3.877131e-03
#> 64  beta.1.,beta.2.  6300 4.139327e-03
#> 65  beta.1.,beta.2.  6400 4.557299e-03
#> 66  beta.1.,beta.2.  6500 5.018772e-03
#> 67  beta.1.,beta.2.  6600 5.518913e-03
#> 68  beta.1.,beta.2.  6700 6.019054e-03
#> 69  beta.1.,beta.2.  6800 6.519195e-03
#> 70  beta.1.,beta.2.  6900 7.072839e-03
#> 71  beta.1.,beta.2.  7000 7.631472e-03
#> 72  beta.1.,beta.2.  7100 8.238981e-03
#> 73  beta.1.,beta.2.  7200 8.914107e-03
#> 74  beta.1.,beta.2.  7300 9.667252e-03
#> 75  beta.1.,beta.2.  7400 1.050133e-02
#> 76  beta.1.,beta.2.  7500 1.136910e-02
#> 77  beta.1.,beta.2.  7600 1.233047e-02
#> 78  beta.1.,beta.2.  7700 1.330277e-02
#> 79  beta.1.,beta.2.  7800 1.435958e-02
#> 80  beta.1.,beta.2.  7900 1.545712e-02
#> 81  beta.1.,beta.2.  8000 1.665844e-02
#> 82  beta.1.,beta.2.  8100 1.791987e-02
#> 83  beta.1.,beta.2.  8200 1.926646e-02
#> 84  beta.1.,beta.2.  8300 2.069755e-02
#> 85  beta.1.,beta.2.  8400 2.215719e-02
#> 86  beta.1.,beta.2.  8500 2.365858e-02
#> 87  beta.1.,beta.2.  8600 2.536231e-02
#> 88  beta.1.,beta.2.  8700 2.721777e-02
#> 89  beta.1.,beta.2.  8800 2.926248e-02
#> 90  beta.1.,beta.2.  8900 3.142167e-02
#> 91  beta.1.,beta.2.  9000 3.366613e-02
#> 92  beta.1.,beta.2.  9100 3.594727e-02
#> 93  beta.1.,beta.2.  9200 3.828947e-02
#> 94  beta.1.,beta.2.  9300 4.066173e-02
#> 95  beta.1.,beta.2.  9400 4.308486e-02
#> 96  beta.1.,beta.2.  9500 4.554495e-02
#> 97  beta.1.,beta.2.  9600 4.810142e-02
#> 98  beta.1.,beta.2.  9700 5.076759e-02
#> 99  beta.1.,beta.2.  9800 5.354944e-02
#> 100 beta.1.,beta.2.  9900 5.645627e-02
#> 101 beta.1.,beta.2. 10000 5.953500e-02
#> 102 beta.1.,beta.2. 10100 6.272953e-02
#> 103 beta.1.,beta.2. 10200 6.605710e-02
#> 104 beta.1.,beta.2. 10300 6.946561e-02
#> 105 beta.1.,beta.2. 10400 7.299518e-02
#> 106 beta.1.,beta.2. 10500 7.661519e-02
#> 107 beta.1.,beta.2. 10600 8.044882e-02
#> 108 beta.1.,beta.2. 10700 8.454452e-02
#> 109 beta.1.,beta.2. 10800 8.880028e-02
#> 110 beta.1.,beta.2. 10900 9.316356e-02
#> 111 beta.1.,beta.2. 11000 9.757211e-02
#> 112 beta.1.,beta.2. 11100 1.020631e-01
#> 113 beta.1.,beta.2. 11200 1.066899e-01
#> 114 beta.1.,beta.2. 11300 1.115583e-01
#> 115 beta.1.,beta.2. 11400 1.165761e-01
#> 116 beta.1.,beta.2. 11500 1.217236e-01
#> 117 beta.1.,beta.2. 11600 1.269848e-01
#> 118 beta.1.,beta.2. 11700 1.324089e-01
#> 119 beta.1.,beta.2. 11800 1.379159e-01
#> 120 beta.1.,beta.2. 11900 1.435288e-01
#> 121 beta.1.,beta.2. 12000 1.492557e-01
#> 122 beta.1.,beta.2. 12100 1.550713e-01
#> 123 beta.1.,beta.2. 12200 1.610079e-01
#> 124 beta.1.,beta.2. 12300 1.670532e-01
#> 125 beta.1.,beta.2. 12400 1.733199e-01
#> 126 beta.1.,beta.2. 12500 1.797311e-01
#> 127 beta.1.,beta.2. 12600 1.862892e-01
#> 128 beta.1.,beta.2. 12700 1.929569e-01
#> 129 beta.1.,beta.2. 12800 1.998673e-01
#> 130 beta.1.,beta.2. 12900 2.069650e-01
#> 131 beta.1.,beta.2. 13000 2.141277e-01
#> 132 beta.1.,beta.2. 13100 2.214818e-01
#> 133 beta.1.,beta.2. 13200 2.290093e-01
#> 134 beta.1.,beta.2. 13300 2.366830e-01
#> 135 beta.1.,beta.2. 13400 2.444225e-01
#> 136 beta.1.,beta.2. 13500 2.522186e-01
#> 137 beta.1.,beta.2. 13600 2.601369e-01
#> 138 beta.1.,beta.2. 13700 2.681379e-01
#> 139 beta.1.,beta.2. 13800 2.761958e-01
#> 140 beta.1.,beta.2. 13900 2.844056e-01
#> 141 beta.1.,beta.2. 14000 2.927010e-01
#> 142 beta.1.,beta.2. 14100 3.011088e-01
#> 143 beta.1.,beta.2. 14200 3.096150e-01
#> 144 beta.1.,beta.2. 14300 3.182103e-01
#> 145 beta.1.,beta.2. 14400 3.270021e-01
#> 146 beta.1.,beta.2. 14500 3.359932e-01
#> 147 beta.1.,beta.2. 14600 3.451267e-01
#> 148 beta.1.,beta.2. 14700 3.543843e-01
#> 149 beta.1.,beta.2. 14800 3.637561e-01
#> 150 beta.1.,beta.2. 14900 3.733013e-01
#> 151 beta.1.,beta.2. 15000 3.829607e-01
#> 152 beta.1.,beta.2. 15100 3.927341e-01
#> 153 beta.1.,beta.2. 15200 4.026574e-01
#> 154 beta.1.,beta.2. 15300 4.127028e-01
#> 155 beta.1.,beta.2. 15400 4.228980e-01
#> 156 beta.1.,beta.2. 15500 4.332371e-01
#> 157 beta.1.,beta.2. 15600 4.437379e-01
#> 158 beta.1.,beta.2. 15700 4.544137e-01
#> 159 beta.1.,beta.2. 15800 4.651813e-01
#> 160 beta.1.,beta.2. 15900 4.761334e-01
#> 161 beta.1.,beta.2. 16000 4.872191e-01
#> 162 beta.1.,beta.2. 16100 4.984766e-01
#> 163 beta.1.,beta.2. 16200 5.098566e-01
#> 164 beta.1.,beta.2. 16300 5.214073e-01
#> 165 beta.1.,beta.2. 16400 5.330834e-01
#> 166 beta.1.,beta.2. 16500 5.449266e-01
#> 167 beta.1.,beta.2. 16600 5.569304e-01
#> 168 beta.1.,beta.2. 16700 5.690002e-01
#> 169 beta.1.,beta.2. 16800 5.812412e-01
#> 170 beta.1.,beta.2. 16900 5.936338e-01
#> 171 beta.1.,beta.2. 17000 6.061169e-01
#> 172 beta.1.,beta.2. 17100 6.187243e-01
#> 173 beta.1.,beta.2. 17200 6.314361e-01
#> 174 beta.1.,beta.2. 17300 6.442246e-01
#> 175 beta.1.,beta.2. 17400 6.570961e-01
#> 176 beta.1.,beta.2. 17500 6.700288e-01
#> 177 beta.1.,beta.2. 17600 6.830269e-01
#> 178 beta.1.,beta.2. 17700 6.960982e-01
#> 179 beta.1.,beta.2. 17800 7.092648e-01
#> 180 beta.1.,beta.2. 17900 7.225512e-01
#> 181 beta.1.,beta.2. 18000 7.358751e-01
#> 182 beta.1.,beta.2. 18100 7.492499e-01
#> 183 beta.1.,beta.2. 18200 7.627448e-01
#> 184 beta.1.,beta.2. 18300 7.763942e-01
#> 185 beta.1.,beta.2. 18400 7.901216e-01
#> 186 beta.1.,beta.2. 18500 8.039977e-01
#> 187 beta.1.,beta.2. 18600 8.179865e-01
#> 188 beta.1.,beta.2. 18700 8.320791e-01
#> 189 beta.1.,beta.2. 18800 8.462536e-01
#> 190 beta.1.,beta.2. 18900 8.605366e-01
#> 191 beta.1.,beta.2. 19000 8.749299e-01
#> 192 beta.1.,beta.2. 19100 8.893719e-01
#> 193 beta.1.,beta.2. 19200 9.039347e-01
#> 194 beta.1.,beta.2. 19300 9.186171e-01
#> 195 beta.1.,beta.2. 19400 9.334328e-01
#> 196 beta.1.,beta.2. 19500 9.483216e-01
#> 197 beta.1.,beta.2. 19600 9.632936e-01
#> 198 beta.1.,beta.2. 19700 9.783535e-01
#> 199 beta.1.,beta.2. 19800 9.935304e-01
#> 200 beta.1.,beta.2. 19900 1.008831e+00
#> 201 beta.1.,beta.2. 20000 1.024234e+00
#> 202 beta.1.,beta.2. 20100 1.039745e+00
#> 203 beta.1.,beta.2. 20200 1.055422e+00
#> 204 beta.1.,beta.2. 20300 1.071224e+00
#> 205 beta.1.,beta.2. 20400 1.084066e+00
#> 206 beta.1.,beta.2. 20500 1.074809e+00
#> 207 beta.1.,beta.2. 20600 1.065660e+00
#> 208 beta.1.,beta.2. 20700 1.056641e+00
#> 209 beta.1.,beta.2. 20800 1.047729e+00
#> 210 beta.1.,beta.2. 20900 1.038873e+00
#> 211 beta.1.,beta.2. 21000 1.030071e+00
#> 212 beta.1.,beta.2. 21100 1.021314e+00
#> 213 beta.1.,beta.2. 21200 1.012653e+00
#> 214 beta.1.,beta.2. 21300 1.004120e+00
#> 215 beta.1.,beta.2. 21400 9.956920e-01
#> 216 beta.1.,beta.2. 21500 9.872935e-01
#> 217 beta.1.,beta.2. 21600 9.789248e-01
#> 218 beta.1.,beta.2. 21700 9.706356e-01
#> 219 beta.1.,beta.2. 21800 9.623851e-01
#> 220 beta.1.,beta.2. 21900 9.542037e-01
#> 221 beta.1.,beta.2. 22000 9.461404e-01
#> 222 beta.1.,beta.2. 22100 9.381714e-01
#> 223 beta.1.,beta.2. 22200 9.302605e-01
#> 224 beta.1.,beta.2. 22300 9.224375e-01
#> 225 beta.1.,beta.2. 22400 9.147457e-01
#> 226 beta.1.,beta.2. 22500 9.071125e-01
#> 227 beta.1.,beta.2. 22600 8.995306e-01
#> 228 beta.1.,beta.2. 22700 8.919891e-01
#> 229 beta.1.,beta.2. 22800 8.844713e-01
#> 230 beta.1.,beta.2. 22900 8.770460e-01
#> 231 beta.1.,beta.2. 23000 8.697233e-01
#> 232 beta.1.,beta.2. 23100 8.625451e-01
#> 233 beta.1.,beta.2. 23200 8.554401e-01
#> 234 beta.1.,beta.2. 23300 8.483837e-01
#> 235 beta.1.,beta.2. 23400 8.413724e-01
#> 236 beta.1.,beta.2. 23500 8.344054e-01
#> 237 beta.1.,beta.2. 23600 8.275071e-01
#> 238 beta.1.,beta.2. 23700 8.206365e-01
#> 239 beta.1.,beta.2. 23800 8.138200e-01
#> 240 beta.1.,beta.2. 23900 8.071060e-01
#> 241 beta.1.,beta.2. 24000 8.004723e-01
#> 242 beta.1.,beta.2. 24100 7.938925e-01
#> 243 beta.1.,beta.2. 24200 7.873783e-01
#> 244 beta.1.,beta.2. 24300 7.809368e-01
#> 245 beta.1.,beta.2. 24400 7.745497e-01
#> 246 beta.1.,beta.2. 24500 7.682354e-01
#> 247 beta.1.,beta.2. 24600 7.619523e-01
#> 248 beta.1.,beta.2. 24700 7.557112e-01
#> 249 beta.1.,beta.2. 24800 7.495586e-01
#> 250 beta.1.,beta.2. 24900 7.434515e-01
#> 251 beta.1.,beta.2. 25000 7.374292e-01
#> 252 beta.1.,beta.2. 25100 7.314887e-01
#> 253 beta.1.,beta.2. 25200 7.256113e-01
#> 254 beta.1.,beta.2. 25300 7.197572e-01
#> 255 beta.1.,beta.2. 25400 7.139554e-01
#> 256 beta.1.,beta.2. 25500 7.081910e-01
#> 257 beta.1.,beta.2. 25600 7.024605e-01
#> 258 beta.1.,beta.2. 25700 6.967964e-01
#> 259 beta.1.,beta.2. 25800 6.912702e-01
#> 260 beta.1.,beta.2. 25900 6.858125e-01
#> 261 beta.1.,beta.2. 26000 6.804006e-01
#> 262 beta.1.,beta.2. 26100 6.750311e-01
#> 263 beta.1.,beta.2. 26200 6.697037e-01
#> 264 beta.1.,beta.2. 26300 6.644020e-01
#> 265 beta.1.,beta.2. 26400 6.591274e-01
#> 266 beta.1.,beta.2. 26500 6.539432e-01
#> 267 beta.1.,beta.2. 26600 6.488189e-01
#> 268 beta.1.,beta.2. 26700 6.437494e-01
#> 269 beta.1.,beta.2. 26800 6.387192e-01
#> 270 beta.1.,beta.2. 26900 6.337315e-01
#> 271 beta.1.,beta.2. 27000 6.287676e-01
#> 272 beta.1.,beta.2. 27100 6.238712e-01
#> 273 beta.1.,beta.2. 27200 6.190358e-01
#> 274 beta.1.,beta.2. 27300 6.143003e-01
#> 275 beta.1.,beta.2. 27400 6.096329e-01
#> 276 beta.1.,beta.2. 27500 6.050127e-01
#> 277 beta.1.,beta.2. 27600 6.004741e-01
#> 278 beta.1.,beta.2. 27700 5.960047e-01
#> 279 beta.1.,beta.2. 27800 5.915586e-01
#> 280 beta.1.,beta.2. 27900 5.871403e-01
#> 281 beta.1.,beta.2. 28000 5.827532e-01
#> 282 beta.1.,beta.2. 28100 5.783884e-01
#> 283 beta.1.,beta.2. 28200 5.740675e-01
#> 284 beta.1.,beta.2. 28300 5.697920e-01
#> 285 beta.1.,beta.2. 28400 5.655458e-01
#> 286 beta.1.,beta.2. 28500 5.613352e-01
#> 287 beta.1.,beta.2. 28600 5.571441e-01
#> 288 beta.1.,beta.2. 28700 5.529855e-01
#> 289 beta.1.,beta.2. 28800 5.488534e-01
#> 290 beta.1.,beta.2. 28900 5.447722e-01
#> 291 beta.1.,beta.2. 29000 5.406968e-01
#> 292 beta.1.,beta.2. 29100 5.366213e-01
#> 293 beta.1.,beta.2. 29200 5.325726e-01
#> 294 beta.1.,beta.2. 29300 5.285423e-01
#> 295 beta.1.,beta.2. 29400 5.245240e-01
#> 296 beta.1.,beta.2. 29500 5.205150e-01
#> 297 beta.1.,beta.2. 29600 5.165845e-01
#> 298 beta.1.,beta.2. 29700 5.126795e-01
#> 299 beta.1.,beta.2. 29800 5.088076e-01
#> 300 beta.1.,beta.2. 29900 5.049948e-01
#> 301 beta.1.,beta.2. 30000 5.012110e-01
#> 302 beta.1.,beta.2. 30100 4.975225e-01
#> 303 beta.1.,beta.2. 30200 4.938624e-01
#> 304 beta.1.,beta.2. 30300 4.902186e-01
#> 305 beta.1.,beta.2. 30400 4.865747e-01
#> 306 beta.1.,beta.2. 30500 4.829573e-01
#> 307 beta.1.,beta.2. 30600 4.794062e-01
#> 308 beta.1.,beta.2. 30700 4.758743e-01
#> 309 beta.1.,beta.2. 30800 4.723592e-01
#> 310 beta.1.,beta.2. 30900 4.688739e-01
#> 311 beta.1.,beta.2. 31000 4.654132e-01
#> 312 beta.1.,beta.2. 31100 4.619793e-01
#> 313 beta.1.,beta.2. 31200 4.585647e-01
#> 314 beta.1.,beta.2. 31300 4.551584e-01
#> 315 beta.1.,beta.2. 31400 4.517521e-01
#> 316 beta.1.,beta.2. 31500 4.483486e-01
#> 317 beta.1.,beta.2. 31600 4.449656e-01
#> 318 beta.1.,beta.2. 31700 4.416163e-01
#> 319 beta.1.,beta.2. 31800 4.383141e-01
#> 320 beta.1.,beta.2. 31900 4.350518e-01
#> 321 beta.1.,beta.2. 32000 4.318246e-01
#> 322 beta.1.,beta.2. 32100 4.286196e-01
#> 323 beta.1.,beta.2. 32200 4.254631e-01
#> 324 beta.1.,beta.2. 32300 4.223070e-01
#> 325 beta.1.,beta.2. 32400 4.191951e-01
#> 326 beta.1.,beta.2. 32500 4.161302e-01
#> 327 beta.1.,beta.2. 32600 4.131096e-01
#> 328 beta.1.,beta.2. 32700 4.101110e-01
#> 329 beta.1.,beta.2. 32800 4.071347e-01
#> 330 beta.1.,beta.2. 32900 4.041827e-01
#> 331 beta.1.,beta.2. 33000 4.012589e-01
#> 332 beta.1.,beta.2. 33100 3.983743e-01
#> 333 beta.1.,beta.2. 33200 3.955212e-01
#> 334 beta.1.,beta.2. 33300 3.927254e-01
#> 335 beta.1.,beta.2. 33400 3.899432e-01
#> 336 beta.1.,beta.2. 33500 3.871855e-01
#> 337 beta.1.,beta.2. 33600 3.844689e-01
#> 338 beta.1.,beta.2. 33700 3.817796e-01
#> 339 beta.1.,beta.2. 33800 3.791394e-01
#> 340 beta.1.,beta.2. 33900 3.765335e-01
#> 341 beta.1.,beta.2. 34000 3.739600e-01
#> 342 beta.1.,beta.2. 34100 3.714164e-01
#> 343 beta.1.,beta.2. 34200 3.688934e-01
#> 344 beta.1.,beta.2. 34300 3.663704e-01
#> 345 beta.1.,beta.2. 34400 3.638535e-01
#> 346 beta.1.,beta.2. 34500 3.613474e-01
#> 347 beta.1.,beta.2. 34600 3.588413e-01
#> 348 beta.1.,beta.2. 34700 3.563576e-01
#> 349 beta.1.,beta.2. 34800 3.539089e-01
#> 350 beta.1.,beta.2. 34900 3.514843e-01
#> 351 beta.1.,beta.2. 35000 3.490616e-01
#> 352 beta.1.,beta.2. 35100 3.466548e-01
#> 353 beta.1.,beta.2. 35200 3.442652e-01
#> 354 beta.1.,beta.2. 35300 3.418779e-01
#> 355 beta.1.,beta.2. 35400 3.395314e-01
#> 356 beta.1.,beta.2. 35500 3.372204e-01
#> 357 beta.1.,beta.2. 35600 3.349244e-01
#> 358 beta.1.,beta.2. 35700 3.326430e-01
#> 359 beta.1.,beta.2. 35800 3.303822e-01
#> 360 beta.1.,beta.2. 35900 3.281223e-01
#> 361 beta.1.,beta.2. 36000 3.258784e-01
#> 362 beta.1.,beta.2. 36100 3.236347e-01
#> 363 beta.1.,beta.2. 36200 3.214071e-01
#> 364 beta.1.,beta.2. 36300 3.191795e-01
#> 365 beta.1.,beta.2. 36400 3.169807e-01
#> 366 beta.1.,beta.2. 36500 3.148009e-01
#> 367 beta.1.,beta.2. 36600 3.126353e-01
#> 368 beta.1.,beta.2. 36700 3.105210e-01
#> 369 beta.1.,beta.2. 36800 3.084279e-01
#> 370 beta.1.,beta.2. 36900 3.063603e-01
#> 371 beta.1.,beta.2. 37000 3.043336e-01
#> 372 beta.1.,beta.2. 37100 3.023203e-01
#> 373 beta.1.,beta.2. 37200 3.003220e-01
#> 374 beta.1.,beta.2. 37300 2.983323e-01
#> 375 beta.1.,beta.2. 37400 2.963581e-01
#> 376 beta.1.,beta.2. 37500 2.944046e-01
#> 377 beta.1.,beta.2. 37600 2.924985e-01
#> 378 beta.1.,beta.2. 37700 2.906183e-01
#> 379 beta.1.,beta.2. 37800 2.887512e-01
#> 380 beta.1.,beta.2. 37900 2.869099e-01
#> 381 beta.1.,beta.2. 38000 2.850765e-01
#> 382 beta.1.,beta.2. 38100 2.832430e-01
#> 383 beta.1.,beta.2. 38200 2.814097e-01
#> 384 beta.1.,beta.2. 38300 2.796030e-01
#> 385 beta.1.,beta.2. 38400 2.778181e-01
#> 386 beta.1.,beta.2. 38500 2.760596e-01
#> 387 beta.1.,beta.2. 38600 2.743042e-01
#> 388 beta.1.,beta.2. 38700 2.725626e-01
#> 389 beta.1.,beta.2. 38800 2.708210e-01
#> 390 beta.1.,beta.2. 38900 2.690877e-01
#> 391 beta.1.,beta.2. 39000 2.673614e-01
#> 392 beta.1.,beta.2. 39100 2.656351e-01
#> 393 beta.1.,beta.2. 39200 2.639213e-01
#> 394 beta.1.,beta.2. 39300 2.622214e-01
#> 395 beta.1.,beta.2. 39400 2.605248e-01
#> 396 beta.1.,beta.2. 39500 2.588283e-01
#> 397 beta.1.,beta.2. 39600 2.571434e-01
#> 398 beta.1.,beta.2. 39700 2.554615e-01
#> 399 beta.1.,beta.2. 39800 2.537810e-01
#> 400 beta.1.,beta.2. 39900 2.521252e-01
#> 401 beta.1.,beta.2. 40000 2.504935e-01
#> 402 beta.1.,beta.2. 40100 2.488892e-01
#> 403 beta.1.,beta.2. 40200 2.472959e-01
#> 404 beta.1.,beta.2. 40300 2.457275e-01
#> 405 beta.1.,beta.2. 40400 2.441923e-01
#> 406 beta.1.,beta.2. 40500 2.426613e-01
#> 407 beta.1.,beta.2. 40600 2.411526e-01
#> 408 beta.1.,beta.2. 40700 2.396684e-01
#> 409 beta.1.,beta.2. 40800 2.382291e-01
#> 410 beta.1.,beta.2. 40900 2.367951e-01
#> 411 beta.1.,beta.2. 41000 2.353736e-01
#> 412 beta.1.,beta.2. 41100 2.339666e-01
#> 413 beta.1.,beta.2. 41200 2.325611e-01
#> 414 beta.1.,beta.2. 41300 2.311557e-01
#> 415 beta.1.,beta.2. 41400 2.297563e-01
#> 416 beta.1.,beta.2. 41500 2.283653e-01
#> 417 beta.1.,beta.2. 41600 2.269863e-01
#> 418 beta.1.,beta.2. 41700 2.256259e-01
#> 419 beta.1.,beta.2. 41800 2.242938e-01
#> 420 beta.1.,beta.2. 41900 2.229744e-01
#> 421 beta.1.,beta.2. 42000 2.216551e-01
#> 422 beta.1.,beta.2. 42100 2.203358e-01
#> 423 beta.1.,beta.2. 42200 2.190165e-01
#> 424 beta.1.,beta.2. 42300 2.176971e-01
#> 425 beta.1.,beta.2. 42400 2.163804e-01
#> 426 beta.1.,beta.2. 42500 2.150968e-01
#> 427 beta.1.,beta.2. 42600 2.138344e-01
#> 428 beta.1.,beta.2. 42700 2.125824e-01
#> 429 beta.1.,beta.2. 42800 2.113339e-01
#> 430 beta.1.,beta.2. 42900 2.100859e-01
#> 431 beta.1.,beta.2. 43000 2.088515e-01
#> 432 beta.1.,beta.2. 43100 2.076339e-01
#> 433 beta.1.,beta.2. 43200 2.064492e-01
#> 434 beta.1.,beta.2. 43300 2.052776e-01
#> 435 beta.1.,beta.2. 43400 2.041179e-01
#> 436 beta.1.,beta.2. 43500 2.029666e-01
#> 437 beta.1.,beta.2. 43600 2.018338e-01
#> 438 beta.1.,beta.2. 43700 2.007256e-01
#> 439 beta.1.,beta.2. 43800 1.996347e-01
#> 440 beta.1.,beta.2. 43900 1.985587e-01
#> 441 beta.1.,beta.2. 44000 1.974892e-01
#> 442 beta.1.,beta.2. 44100 1.964197e-01
#> 443 beta.1.,beta.2. 44200 1.953502e-01
#> 444 beta.1.,beta.2. 44300 1.942885e-01
#> 445 beta.1.,beta.2. 44400 1.932456e-01
#> 446 beta.1.,beta.2. 44500 1.922157e-01
#> 447 beta.1.,beta.2. 44600 1.911862e-01
#> 448 beta.1.,beta.2. 44700 1.901613e-01
#> 449 beta.1.,beta.2. 44800 1.891454e-01
#> 450 beta.1.,beta.2. 44900 1.881421e-01
#> 451 beta.1.,beta.2. 45000 1.871387e-01
#> 452 beta.1.,beta.2. 45100 1.861354e-01
#> 453 beta.1.,beta.2. 45200 1.851410e-01
#> 454 beta.1.,beta.2. 45300 1.841523e-01
#> 455 beta.1.,beta.2. 45400 1.831884e-01
#> 456 beta.1.,beta.2. 45500 1.822613e-01
#> 457 beta.1.,beta.2. 45600 1.813469e-01
#> 458 beta.1.,beta.2. 45700 1.804353e-01
#> 459 beta.1.,beta.2. 45800 1.795236e-01
#> 460 beta.1.,beta.2. 45900 1.786235e-01
#> 461 beta.1.,beta.2. 46000 1.777250e-01
#> 462 beta.1.,beta.2. 46100 1.768265e-01
#> 463 beta.1.,beta.2. 46200 1.759280e-01
#> 464 beta.1.,beta.2. 46300 1.750408e-01
#> 465 beta.1.,beta.2. 46400 1.741682e-01
#> 466 beta.1.,beta.2. 46500 1.733006e-01
#> 467 beta.1.,beta.2. 46600 1.724417e-01
#> 468 beta.1.,beta.2. 46700 1.715828e-01
#> 469 beta.1.,beta.2. 46800 1.707240e-01
#> 470 beta.1.,beta.2. 46900 1.698655e-01
#> 471 beta.1.,beta.2. 47000 1.690192e-01
#> 472 beta.1.,beta.2. 47100 1.681822e-01
#> 473 beta.1.,beta.2. 47200 1.673487e-01
#> 474 beta.1.,beta.2. 47300 1.665152e-01
#> 475 beta.1.,beta.2. 47400 1.656817e-01
#> 476 beta.1.,beta.2. 47500 1.648482e-01
#> 477 beta.1.,beta.2. 47600 1.640322e-01
#> 478 beta.1.,beta.2. 47700 1.632500e-01
#> 479 beta.1.,beta.2. 47800 1.624679e-01
#> 480 beta.1.,beta.2. 47900 1.616857e-01
#> 481 beta.1.,beta.2. 48000 1.609060e-01
#> 482 beta.1.,beta.2. 48100 1.601366e-01
#> 483 beta.1.,beta.2. 48200 1.593672e-01
#> 484 beta.1.,beta.2. 48300 1.585978e-01
#> 485 beta.1.,beta.2. 48400 1.578284e-01
#> 486 beta.1.,beta.2. 48500 1.570590e-01
#> 487 beta.1.,beta.2. 48600 1.562896e-01
#> 488 beta.1.,beta.2. 48700 1.555302e-01
#> 489 beta.1.,beta.2. 48800 1.547736e-01
#> 490 beta.1.,beta.2. 48900 1.540170e-01
#> 491 beta.1.,beta.2. 49000 1.532604e-01
#> 492 beta.1.,beta.2. 49100 1.525038e-01
#> 493 beta.1.,beta.2. 49200 1.517472e-01
#> 494 beta.1.,beta.2. 49300 1.509906e-01
#> 495 beta.1.,beta.2. 49400 1.502340e-01
#> 496 beta.1.,beta.2. 49500 1.494882e-01
#> 497 beta.1.,beta.2. 49600 1.487427e-01
#> 498 beta.1.,beta.2. 49700 1.479973e-01
#> 499 beta.1.,beta.2. 49800 1.472519e-01
#> 500 beta.1.,beta.2. 49900 1.465064e-01
#> 501 beta.1.,beta.2. 50000 1.457650e-01
#> 
#> attr(,"class")
#> [1] "evppi" "list"